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Abstract

This note is based on lectures by Prof. Xu Guixiang in 2023 fall. This is a selection
and expansion of the involved content of Partial Differential Equations by Evans, but
is not endorsed by the lecturer. All errors are almost surely mine, and I’d be very
grateful if you could send an email to 3275779330@qq.com to point them out.
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1 Introduction

This course is an introduction to the mathematical study of Partial Differential Equa-
tions(PDEs), which are ubiquitous in mathematically oriented scientific fields, such as
physics(where people use PDEs to study sound, heat, diffusion, and quantum mechanics,
etc.) and engineering(structural mechanics, image processing, for example). The course
will mainly cover four prototype linear equations and a transform method - Fourier trans-
form, but will not focus on modern functional analytic techniques.

We will of course meet several specific equations, but we do NOT "just solve" them. In
general, given a system of PDE, there are several questions we can ask:

• Does a solution exist?

• Is the solution unique?

• Does the solution depend continuously on the data, such as the desired values of the
solution on the boundary of our domain, or the starting configuration when there is
a time variable?

• How regular is the solution? Is it continuously differentiable? Or even smooth?

Before we define what a partial differential equation is, I recommend that, if you are
new to PDE, you should read the appendix now, where you could find notations and
important analytic tools used. Note that we write "PDE" as an abbreviation for both the
singular "partial differential equation" and the plural "partial differential equations".

In summary, a PDE is an equation involving an unknown function of two or more
variables and certain of its partial derivatives. Fix an integer k ⩾ 1.

Definition 1.1. A partial differential equation of order k is an expression of the form

(1) F(Dku(x), Dk−1u(x), · · · , Du(x), u(x), x) = 0,

where F : Rnk × Rnk−1 × · · · × Rn × R × U → R is given, and u : U → R is the unknown.

We now try to crudely classify (1), and after that we shall present some examples of
each class.

Definition 1.2. (i) The partial differential equation (1) is called linear if it has the form

∑
|α|⩽k

aα(x)Dαu = f (x)

for given functions aα(|α| ⩽ k), f . This linear PDE is homogeneous if f ≡ 0.
(ii) The PDE (1) is semilinear if it has the form

∑
|α|=k

aα(x)Dαu + a0(Dk−1u, · · · , Du, u, x) = 0.

(iii) The PDE (1) is quasilinear if it has the form

∑
|α|=k

aα(Dk−1u, · · · , Du, u, x)Dαu + a0(Dk−1u, · · · , Du, u, x) = 0.
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(iv) The PDE (1) is fully nonlinear if it depends nonlinearly upon the highest order derivatives.

Definition 1.3. A system of partial differential equation of order k is an expression of the
form

(2) F(Dku(x), Dk−1u(x), · · · , Du(x), u(x), x) = 0,

where F : Rmnk × Rmnk−1 × · · · × Rmn × Rm × U → Rm is given, and u : U → Rm, u =

(u1, · · · , um) is the unknown.

Systems are classified in the obvious way as being linear, semilinear, etc.
There is no general theory known concerning the solvability of all partial differential

equations. Instead, research focuses on various particular partial differential equations
that are important for applications, and following is a list of many specific partial differ-
ential equations of interest in current research. The ones that appears in the following
sections won’t be listed.

1. Single partial differential equations.

(a) Linear equations.

i. Helmholtz’s (or eigenvalue) equation

−∆u = λu.

ii. Liouville’s equation

ut −
n

∑
i=1

(biu)xi = 0.

iii. Telegraph equation
utt + 2dut − uxx = 0.

iv. Airy’s equation
ut + uxxx = 0.

(b) Nonlinear equations.

i. Eikonal equation
|Du| = 1.

ii. p-Laplacian equation
div(|Du|p−2Du) = 0.

iii. Minimal surface equation

div
(

Du
(1 + |Du|2)1/2

)
= 0.

iv. Korteweg-de Vries (KdV) equation

ut + uux + uxxx = 0.

2. Systems of partial differential equations.

3



(a) Linear systems.

i. Equilibrium equations of linear elasticity

µ∆u + (λ + µ)D(div u) = 0.

ii. Maxwell’s equations 
Et = curl B

Bt = − curl E

div B = div E = 0.

(b) Nonlinear systems.

i. System of conservation laws

ut + div F(u) = 0.

ii. Navier-Stokes equations for incompressible, viscous flow{
ut + u · Du − ∆u = −Dp

div u = 0.

Enlightened from the questions raised before, we say that a given problem for a PDE is
well-posed if

1. the problem in fact has a solution;

2. this solution is unique;

3. the solution depends continuously on the data given in the problem.

Now it’s time to clarify what a solution actually is. We clearly want the solution to have
certain properties, for example, real analytic. But is it too much? Maybe it would be wiser
to require a solution of a PDE of order k to be at least k times continuously differentiable.

Definition 1.4. We say u ∈ Ck(U) is classical solution of a PDE if in fact the PDE is identically
satisfied on U when u, Du, · · · , Dku are substituted in.

However, for many PDE, we cannot achieve this. Under many circumstances we must
allow for solutions u which are not continuously differentiable or even continuous. In gen-
eral, these equations has no classical solutions but is well-posed if we allow for properly
defined generalized or weak solutions.

The point is this: if from the outset we demand that our solutions be very regular, say
k-times continuously differentiable, then it is usually hard to find them; a far more rea-
sonable strategy is to consider as separate the existence and the smoothness (or regularity)
problems. But let me explicitly note here that Part I is mainly devoted to deriving for-
mulas for the classical solutions. After that the book starts spending efforts on proving
mathematically the existence of solutions to various sorts of partial differential equations.

4



2 Four Important Linear PDE

In this chapter we introduce four fundamental linear partial differential equations for
which various explicit formulas for solutions are available. These are

the transport equation ut + b · Du = 0 (§2.1),

Laplace’s equation ∆u = 0 (§2.2),

the heat equation ut − ∆u = 0 (§2.3),

the wave equation utt − ∆u = 0 (§2.4).

Before going further, the reader is again advised to review the discussions of integration
by parts, Green’s formulas, convolutions, etc., in the appendix and later refer back to these
as necessary.

2.1 Transport equation

One of the simplest partial differential equations is

(1) ut + b · Du = 0 in Rn × (0, ∞),

where b = (b1, · · · , bn) is a fixed vector in Rn, and u = u(x, t) : Rn × [0, ∞) → R is the
unknown.
Homogeneous problem. Our aim is to solve the initial-value problem

(2)

{
ut + b · Du = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Fix any point (x, t) ∈ Rn × (0, ∞) and define z(s) := u(x + sb, t + s)(s ∈ R). We then
calculate

z′(s) = Du(x + sb, t + s) · b + ut(x + sb, t + s) = 0,

implying that z(s) is constant on the line through (x, t) with the direction (b, 1) ∈ Rn+1.
Note that this line hit the plane Rn × {t = 0} when s = −t, at the point (x − tb, 0),
thus z(−t) = u(x − tb, 0) = g(x − tb). Since u is constant on the line, we conclude that
u(x, t) = g(x − tb).
Nonhomogeneous problem. Now we turn to

(3)

{
ut + b · Du = f in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Fix (x, t) and define z(s) as before, and this time we have z′(s) = f (x + sb, t + s). Conse-
quently

u(x, t)− g(x − tb) = z(0)− z(−t) =
∫ 0

−t
z′(s)ds

=
∫ 0

−t
f (x + sb, t + s)ds =

∫ t

0
f (x + (s − t)b, s)ds
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and so

(4) u(x, t) = g(x − tb) +
∫ t

0
f (x + (s − t)b, s)ds (x ∈ Rn, t ⩾ 0)

solves (3).

2.2 Laplace’s equation

In this section we will study a very important example of elliptic PDE - Laplace’s equa-
tion

(5) ∆u = 0

and its generalization - Poisson’s equation

(6) −∆u = f .

In both (5) and (6), x ∈ U and the unknown is u : Ū → R, u = u(x). In (6) the function
f : U → R is also given.

Definition 2.1. A C2 function u satisfying (5) is called a harmonic function.

Fundamental solution. Laplace’s equation is invariant under rotation(Problem 2.2), so we
first find radial solutions. Set v(r) = u(x) where r = |x| = (x2

1 + · · · + x2
n)

1/2. First we

calculate
∂r
∂xi

=
1
2
(x2

1 + · · ·+ x2
n)

−1/2 · 2xi =
xi

r
(1 ⩽ i ⩽ n, x 6= 0), and so

uxi = v′(r)
∂r
∂xi

=
xi

r
v′(r), uxixi = ∂xi

xi

r
v′(r) +

xi

r
v′′(r)∂xir =

r2 − x2
i

r3 v′(r) +
x2

i
r2 v′′(r).

Hence

∆u =
n
r

v′(r)−
x2

1 + · · ·+ x2
n

r3 v′(r) +
x2

1 + · · ·+ x2
n

r2 v′′(r) = v′′(r) +
n − 1

r
v′(r).

Since u solves (5), we have
v′′(r)
v′(r)

=
1 − n

r
if v′ 6= 0. We deduce ln(|v′|)′ = v′′

v′
=

1 − n
r

,

and thus v′(r) = Cr1−n for some constant C. Integrate again to obtain

v(r) =

{
C ln r + C1, n = 2
Cr2−n

2−n + C2, n ⩾ 3.

Therefore, if we choose "appropriate" constants, we get the following

Definition 2.2. The function

(7) Φ(x) :=

{
− 1

2π ln |x|, n = 2
1

n(n−2)α(n)
1

|x|n−2 , n ⩾ 3,

defined for x ∈ Rn, x 6= 0, is the fundamental solution of (5).
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Basic estimates. We have

(8) |DΦ(x)| ⩽ C
|x|n−1 , |D2Φ(x)| ⩽ C

|x|n (x 6= 0).

This is obvious from direct computations of DΦ(x) and D2Φ(x), omitting the constants.
Poisson’s equation. The basic idea is as follows:

x 7→ Φ(x) is harmonic shift
==⇒ Φ(x − y) also harmonic as a function of x

multiplication
=======⇒

Φ(x − y) f (y) also harmonic
sum with respect to y
===========⇒

∫
Rn

Φ(x − y) f (y)dy is also harmonic.

But this is WRONG because D2Φ(x − y) is not summable (cf. Definition B.5) near y = x.
Instead, if f ∈ C2

c (R
n), then

Theorem 2.1. If u(x) =
∫

Rn
Φ(x − y) f (y)dy, then

(i) u ∈ C2(Rn); (ii) −∆u = f in Rn.

Proof. (i) By the property of convolution we have u(x) =
∫

Rn
Φ(y) f (x − y)dy. Hence

u(x + hei)− u(x)
h

=
∫

Rn
Φ(y)

[
f (x + hei − y)− f (x − y)

h

]
dy.

Since f is twice continuously differentiable, then
f (x + hei − y)− f (x − y)

h
→ fxi(x −

y) uniformly on Rn as h → 0. Thus uxi(x) =
∫

Rn
Φ(y) fxi(x − y)dy(i = 1, · · · , n), and

similarly,

uxixj(x) =
∫

Rn
Φ(y) fxixj(x − y)dy(i, j = 1, · · · , n),

proving that u ∈ C2(Rn).
(ii) Since Φ blows up at 0, we will need to isolate this singularity inside a small ball. So fix
ε > 0. Then

(9) ∆u(x) =
∫

B(0,ε)
Φ(y)∆x f (x − y)dy +

∫
Rn−B(0,ε)

Φ(y)∆x f (x − y)dy =: Iε + Jε.

First for Iε, we have the following estimate: |Iε| ⩽ C0‖D2 f ‖L∞(Rn)

∫
B(0,ε)

|Φ(y)|dy. Inte-

grate in polar coordinates to obtain |Iε| ⩽
{

Cε2| ln ε|, n = 2,

Cε2, n ⩾ 3.
(for example,

∫
B(0,ε)

1
|x|n−2 =

α(n)
∫ ε

0
r2−nrn−1dr =

1
2

α(n)ε2.) An integration by parts (cf. Theorem B.3) yields

Jε =
∫

Rn−B(0,ε)
Φ(y)∆y f (x − y)dy

= −
∫

Rn−B(0,ε)
DΦ(y) · Dy f (x − y)dy +

∫
∂B(0,ε)

Φ(y)
∂ f
∂ν

(x − y)dS(y)

=: Kε + Lε.
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Similarly, since |ν| = 1 and Φ(y) = Φ(|y|), we have

(10) |Lε| ⩽ C0|ν|‖D f ‖L∞(Rn)

∫
∂B(0,ε)

|Φ(y)|dS(y) ⩽
{

Cε| ln ε|, n = 2,

Cε, n ⩾ 3.

We continue by integrating by parts once again in the term Kε, to discover

Kε = −
∫

Rn−B(0,ε)
DΦ(y) · Dy f (x − y)dy

=
∫

Rn−B(0,ε)
∆yΦ(y) f (x − y)dy −

∫
∂B(0,ε)

∂Φ
∂ν

(y) f (x − y)dS(y)

=−
∫

∂B(0,ε)

∂Φ
∂ν

(y) f (x − y)dS(y).

since ∆Φ(y) = 0 in Rn − B(0, ε). Finally there’s one term left. By Definition B.2,
∂Φ
∂ν

(y) =

ν · DΦ(y) = − y
|y|

−1
nα(n)

y
|y|n =

1
nα(n)εn−1 = surface area of ∂B(0, ε), if y ∈ ∂B(0, ε). Con-

sequently

Kε = − 1
nα(n)εn−1

∫
∂B(0,ε)

f (x − y)dS(y) = −−
∫

∂B(x,ε)
f (y)dS(y) → − f (x) as ε → 0.

This, combined with (10), implies that Jε → − f (x), ε → 0. Now (9) shows that −∆u(x) =
f (x), as asserted.

Remark 2.1. We write −∆Φ = δ0 in Rn (cf. Appendix B.5), and so for x ∈ Rn,

(11) −∆u(x) =
∫

Rn
−∆xΦ(x − y) f (y)dy =

∫
Rn

δx f (y)dy = f (x).

Mean-value formulas.

Theorem 2.2. (Mean-value formulas for Laplace’s equation). If u ∈ C2(U) is harmonic, then

(12) u(x) = −
∫

∂B(x,r)
udS = −

∫
B(x,r)

udy

for each ball B(x, r) ⊂ U.

Proof. (i) Set ϕ(r) := −
∫

∂B(x,r)
u(y)dS(y)

y=x+rz
======

1
nα(n)rn−1

∫
∂B(0,1)

u(x + rz)rn−1dS(z) =

−
∫

∂B(0,1)
u(x + rz)dS(z). Then by Green’s formula (cf. Theorem B.3),

ϕ′(r) = −
∫

∂B(0,1)
Du(x + rz) · zdS(z) = −

∫
∂B(x,r)

Du(y)
y − x

r
dS(y)

=−
∫

∂B(x,r)
Du(y) · νdS(y) (

y − x
r

is the outward unit normal vector)

=−
∫

∂B(x,r)

∂u
∂ν

(y)dS(y) (Definition B.2)
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=
1

nα(n)rn−1

∫
∂B(x,r)

∆u(y)dy =
r
n
−
∫

B(x,r)
∆u(y)dy = 0.

Thus ϕ(r) is constant. So ϕ(r) = lim
t→0

ϕ(t) = lim
t→0

−
∫

∂B(x,t)
u(y)dS(y) = u(x).

(ii) Employing polar coordinates (cf. Theorem B.4) gives∫
B(x,r)

udy =
∫ r

0

(∫
∂B(x,s)

udS(y)
)

ds =
∫ r

0

(
nα(n)sn−1−

∫
∂B(x,s)

udS
)

ds

= α(n)u(x)
∫ r

0
nsn−1ds = α(n)rnu(x).

Hence u(x) = −
∫

B(x,r)
udy.

Theorem 2.3. (Converse to m-v property). If u ∈ C2(U) satisfies

u(x) =
∫

∂B(x,r)
udS

for ∀B(x, r) ⊂ U, then u is harmonic.

Proof. Suppose that u is not harmonic, then there exists some ball B(x, r) ⊂ U such that,

say, ∆u > 0 within B(x, r). But then for ϕ as above, 0 = ϕ′(r) =
r
n
−
∫

B(x,r)
∆u(y)dy > 0, a

contradiction.

Maximum principles. In this part U is open and bounded.

Theorem 2.4. (Strong maximum principle). Suppose u ∈ C2(U) ∩ C(Ū) is harmonic within U.
(i) Then max

Ū
u = max

∂U
u.

(ii) Furthermore, if U is connected and there exists a point x0 ∈ U such that u(x0) = max
Ū

u, then

u is constant within U.

Remark 2.2. Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the
strong maximum principle. Replacing u by −u, we recover also similar assertions with
"min" replacing "max".

Proof. Suppose there exists a point x0 ∈ U with u(x0) = M := max
Ū

u. Then for any r with

0 < r < dist(x0, ∂U), the mean-value property asserts

M = u(x0) =
∫

B(x0,r)
udy ⩽ M.

As equality holds only if u ≡ M within B(x0, r), we see u(y) = M for all y ∈ B(x0, r). Now
consider the set {x ∈ U : u(x) = M}. It is open as the union of open balls. Meanwhile it is
relatively closed in U since u( lim

n→∞
xn) = lim

n→∞
u(xn) = M if {xn} ⊂ {x ∈ U : u(x) = M}.

Thus the set equals U if U is connected. This proves (ii), from which (i) follows.

Corollary 2.1. (Positivity). If U is connected and u ∈ C2(U) ∩ C(Ū) satisfies{
∆u = 0 in U

u = g on ∂U,
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where g ⩾ 0, then u is positive everywhere in U if g is positive somewhere on ∂U.

Proof. Apply the two maximum principles to know that u is constant and positive since
the maximum of u on ∂U is positive.

Theorem 2.5. (Uniqueness). Let g ∈ C(∂U), f ∈ C(U). Then there exists at most one solution
u ∈ C2(U) ∩ C(Ū) of the boundary-value problem

(13)

{
−∆u = f in U

u = g on ∂U.

Proof. Proof. If u and ũ both satisfy (13), apply Theorem 2.4 to the harmonic functions
w := ±(u − ũ) and we obtain w ≡ 0 in U.

Regularity. Next we prove that if u ∈ C2 is harmonic, then necessarily u ∈ C∞. Thus
harmonic functions are automatically infinitely differentiable.

Theorem 2.6. (Smoothness). If u ∈ C(U) satisfies the mean-value property (12) for each ball
B(x, r) ⊂ U, then

u ∈ C∞(U).

Proof. Let η be a standard mollifier, as described in Appendix B.4, and recall that η is a
radial function. Set uε := ηε ∗ u in Uε = {x ∈ U : dist(x, ∂U) > ε}. As shown in Appendix
B.4, uε ∈ C∞(Uε).

We will prove u is smooth by demonstrating that u ≡ uε on Uε. Indeed if x ∈ Uε, then

uε(x) =
∫

U
ηε(x − y)u(y)dy =

1
εn

∫
B(x,ε)

η

(
|x − y|

ε

)
u(y)dy

=
1
εn

∫ ε

0
η
(r

ε

)(∫
∂B(x,r)

udS
)

dr

=
1
εn u(x)

∫ ε

0
η
(r

ε

)
nα(n)rn−1dr (by (12))

= u(x)
∫

B(0,ε)
ηε(y)dy = u(x).

The integration area of the last integral can also be Rn; no matter. Thus uε ≡ u in Uε, and
so u ∈ C∞(Uε) for each ε > 0.

Local estimates.

Theorem 2.7. (Estimates on derivatives). Assume u is harmonic in U. Then

(14) |Dαu(x0)| ⩽
Ck

rn+k ‖u‖L1(B(x0,r))

for each ball B(x0, r) ⊂ U and each multiindex α of order |α| = k. Here

(15) C0 =
1

α(n)
, Ck =

(2n+1nk)k

α(n)
(k = 1, · · · ).
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Proof. We do induction on k. The case k = 0 is immediate from Theorem 2.2 as

|u(x0)| ⩽ −
∫

B(x0,r)
|u(y)|dy =

1
α(n)rn

∫
B(x0,r)

|u(y)|dy =
C0

rn ‖u‖L1(B(x0,r)).

For k = 1, we note upon differentiating Laplace’s equation that uxi(i = 1, · · · , n) is har-
monic. Consequently, by Theorem B.1,

(16)
|uxi(x0)| =

∣∣∣∣−∫B(x0,r/2)
uxidx

∣∣∣∣ = ∣∣∣∣ 1
α(n)(r/2)n

∫
∂B(x0,r/2)

uνidS
∣∣∣∣

⩽ 2n

α(n)rn ‖u‖L∞ |νi|
∫

∂B(x0,r/2)
dS =

2n
r
‖u‖L∞(∂B(x0,r/2)).

Now if x ∈ ∂B(x0, r/2), then B(x, r/2) ⊂ B(x0, r) ⊂ U, and so

|u(x)| ⩽ 1
α(n)

(
2
r

)n
‖u‖L1(B(x0,r))

by (14), (15) for k = 0. Combining the inequalities above, we deduce

|Dαu(x0)| ⩽
2n+1n
α(n)

1
rn+1‖u‖L1(B(x0,r))

if |α| = 1. This verifies (14), (15) for k = 1.
Assume now k ⩾ 2 and (14), (15) are valid for all balls in U and each multiindex of

order less than or equal to k − 1. Fix B(x0, r) ⊂ U and let α be a multiindex with |α| = k.
Then Dαu = (Dβu)xi for some i ∈ {1, · · · , n}, |β| = k − 1. By calculations similar to those
in (16), we establish that

|Dαu(x0)| =
∣∣∣∣−∫B(x0,r/k)

(Dβu(x0))xidx
∣∣∣∣ = 1

α(n)(r/k)n

∣∣∣∣∫
∂B(x0,r/k)

(Dβu(x0)) · νidS
∣∣∣∣

⩽ kn

α(n)rn nα(n)(r/k)n−1‖Dβu‖L∞(∂B(x0,r/k)) =
nk
r
‖Dβu‖L∞(∂B(x0,r/k)).

If x ∈ ∂B(x0, r/k), then B(x0, r/k) ⊂ B(x0, r) ⊂ U. Thus (14), (15) for k − 1 imply

|Dβu(x)| ⩽ (2n+1n(k − 1))k−1

α(n)
(

k−1
k r
)n+k−1 ‖u‖L1(B(x0,r)),

and so

|Dαu(x0)| ⩽
(2n+1)k−1nkkn+k

α(n)(k − 1)nrn+k ‖u‖L1(B(x0,r)) ⩽
(2n+1nk)k

α(n)rn+k ‖u‖L1(B(x0,r)).

This confirms (14), (15) for |α| = k.

Corollary 2.2. In fact, we have a better estimate Ĉk =
n2n+1kn+knk−1

α(n)
.

Proof. Similarly we conclude that |Dαu(x0)| ⩽ nk
r
‖Dβu‖L∞(∂B(x0,r/k)) and |Dβu(x)| ⩽

11



Ĉk−1(
k−1

k r
)n+k−1‖u‖L1(B(x0,r)) by induction. Combining them and we get

|Dαu(x0)| ⩽
nk
r

Ĉk−1(
k−1

k r
)n+k−1‖u‖L1(B(x0,r)) =

Ĉk

rn+k ‖u‖L1(B(x0,r)).

This shows that
nkn+kĈk−1

(k − 1)n+k−1 = Ĉk, i.e. n
Ĉk−1

(k − 1)n+k−1 =
Ĉk

kn+k . Now set f (k) =
Ĉk

kn+k , and

we have f (k) = n f (k − 1), and so f (k) = nk f (1) = nk−1Ĉ1. From previous discussions we

know that Ĉ1 = C1 =
2n+1n
α(n)

, hence f (k) = nk−1 2n+1n
α(n)

. Therefore Ĉk =
n2n+1kn+knk−1

α(n)
, as

desired. Simply note that lim
k→∞

Ck

Ĉk
= lim

k→∞

(2n+1)k−1

kn = +∞, and this is the reason why Ĉk

is better.

Theorem 2.8. (Liouville). Suppose u : Rn → R is harmonic and bounded. Then u is constant.

Proof. Fix x0 ∈ Rn, r > 0, and apply Theorem 2.7 on B(x0, r):

|Du(x0)| ⩽
√

nC1

rn+1 ‖u‖L1(B(x0,r)) ⩽
√

nC1

rn+1 α(n)rn‖u‖L∞(Rn) ⩽
√

nC1α(n)
r

‖u‖L∞(Rn) → 0

as r → ∞. The term
√

n appears because Du is an n-dimensional vector. Thus Du ≡ 0,
and so u is constant.

Theorem 2.9. (Representation formula). Let f ∈ C2
c (R

n), n ⩾ 3. Then any bounded solution of

−∆u = f in Rn

has the form

u(x) =
∫

Rn
Φ(x − y) f (y)dy + C(x ∈ Rn)

for some constant C.

Proof. Since Φ(x) → 0 as |x| → ∞ for n ⩾ 3 and f has compact support, ũ(x) :=∫
Rn

Φ(x − y) f (y)dy is a bounded solution of −∆u = f in Rn (using (8)). If u is another

solution, w := u − ũ is constant, according to Theorem 2.8.

Theorem 2.10. (Analyticity). Assume u is harmonic in U. Then u is analytic in U.

Proof. We omit this proof. Refer to pp 31-32 of the textbook.

Theorem 2.11. (Harnack’s inequality). For each connected open set V ⊂⊂ U, there exists a
positive constant C, depending only on V, such that

sup
V

u ⩽ C inf
V

u

for all nonnegative harmonic functions u in U.
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Proof. Let r := 1
4 dist(V, ∂U). For any x, y ∈ V, |x − y| ⩽ r. Then

u(x) = −
∫

B(x,2r)
udz (m-v property)

⩾ 1
α(n)2nrn

∫
B(y,r)

udz (u ⩾ 0 in U, B(y, r) ⊂ B(x, 2r))

=
1
2n−
∫

B(y,r)
udz =

1
2n u(y). (m-v property)

Exchanging x and y gives 2nu(y) ⩾ u(x) ⩾ 1
2n u(y) for all |x − y| ⩽ r. Since V is connected

and V̄ is compact, we can cover V̄ by a chain of finitely many balls {Bi}N
i=1, each of which

has radius r
2 and Bi ∩ Bi−1 6= ∅ for i = 2, · · · , N. Then

u(x) ⩾ 1
2n(N+1)

u(y)

for all x, y ∈ V.

Corollary 2.3. There exists a positive constant C such that
1
C

u(y) ⩽ u(x) ⩽ Cu(y) for all
x, y ∈ V.

Remark 2.3. This corollary assert that the values of a nonnegative harmonic function
within V are all comparable: u cannot be very small (or large) at any point of V unless
u is very small (or very large) everywhere in V. The intuitive idea is that since V is a posi-
tive distance away from ∂U, there is "room for the averaging effects of Laplace’s equation
to occur".

Green’s function. Assume now U ⊂ Rn is bounded, and ∂U is C1. We propose next to
obtain a general representation formula for the solution of Poisson’s equation

−∆u = f in U,

subject to the prescribed boundary condition

u = g on ∂U.

Let’s first look at basic ideas. Suppose u ∈ C2(Ū), fix x ∈ U, and choose ε > 0
so small that B(x, ε) ⊂ U. Apply Green’s formula (iii) of Theorem B.3 on the region
Vε := U − B(x, ε) to u(y) and Φ(y − x). We thereby compute

(17)
∫

Vε

u(y)∆yΦ(y − x)− Φ(y − x)∆u(y)dy =
∫

∂Vε

u(y)
∂Φ
∂ν

(y − x)− Φ(y − x)
∂u
∂ν

(y)dS.

(i) Since ∆Φ(x − y) = 0 for x 6= y, we have
∫

Vε

u(y)∆yΦ(y − x)dy = 0.

(ii)∫
Vε

Φ(y − x)∆u(y)dy =
∫

U
Φ(y − x)∆u(y)dy −

∫
B(x,ε)

Φ(y − x)∆u(y)dy ,

⩽ Cα(n)εn 1
n(n − 2)α(n)

1
εn−2 = C′ε2 → 0(ε → 0).

13



(iii) Similar to the last part of Theorem 2.1,∫
∂Vε

u(y)
∂Φ
∂ν

(y − x)dS(y) =
∫

∂U
u(y)

∂Φ
∂ν

(y − x)dS(y) +
∫

∂B(x,ε)
u(y)

∂Φ
∂ν

(y − x)dS(y)

=
∫

∂U
u(y)

∂Φ
∂ν

(y − x)dS(y) +
∫

∂B(x,ε)
u(y)

1
nα(n)εn−1 dS(y)

=
∫

∂U
u(y)

∂Φ
∂ν

(y − x)dS(y) + −
∫

∂B(x,ε)
u(y)dS(y)

→ u(x)(ε → 0).

(iv)

∫
∂Vε

Φ(y − x)
∂u
∂ν

(y)dS(y) =
∫

∂U
Φ(y − x)

∂u
∂ν

(y)dS(y) +
∫

∂B(x,ε)
Φ(y − x)

∂u
∂ν

(y)dS(y)

⩽
∥∥∥∥∂u

∂ν

∥∥∥∥
L∞(Ū)

1
n(n − 2)α(n)

1
εn−2 nα(n)εn−1 =

Cε

n − 2
→ 0(ε → 0).

Consequently, sending ε → 0 in (17) yields, for any x ∈ U, u ∈ C2(U),

(18) u(x) =
∫

∂U
Φ(y − x)

∂u
∂ν

(y)− u(y)
∂Φ
∂ν

(y − x)dS(y)−
∫

U
Φ(y − x)∆u(y)dy.

Now formula (18) would permit us to solve for u(x) if we knew the values of ∆u within
U and u, ∂u/∂ν along ∂U. However, ∂u/∂ν along ∂U is unknown, and we must therefore
somehow modify (18) to remove this term.

So now we introduce a corrector function ϕx = ϕx(y) solving the boundary-value prob-
lem

(19)

{
∆ϕx = 0 in U

ϕx = Φ(y − x) on ∂U.

Apply Green’s formula again to compute

(20)

−
∫

U
ϕx(y)∆u(y)dy =

∫
U

u(y)∆ϕx(y)− ϕx(y)∆u(y)dy

=
∫

∂U
u(y)

∂ϕx

∂ν
(y)− ϕx(y)

∂u
∂ν

(y)dS(y)

=
∫

∂U
u(y)

∂ϕx

∂ν
(y)− Φ(y − x)

∂u
∂ν

(y)dS(y).

Adding (20) to (18), we obtain

(21) u(x) = −
∫

∂U
u(y)

(
∂Φ
∂ν

(y − x)− ∂ϕx

∂ν
(y)
)

dS(y)−
∫

U
(Φ(y − x)− ϕx(y))∆u(y)dy.

We now fully understand the motivation for constructing the Green’s function, introduc-
ing next this

14



Definition 2.3. Green’s function for the region U is

G(x, y) := Φ(y − x)− ϕx(y)(x, y ∈ U, x 6= y).

Using this terminology, we could rewrite (21) as

(22) u(x) = −
∫

∂U
u(y)

∂G
∂ν

(y − x)dS(y)−
∫

U
G(x, y)∆u(y)dy(x ∈ U),

where
∂G
∂ν

(x, y) = DyG(x, y) · ν(y)

is the outer normal derivative of G with respect to the variable y. Observe that ∂u/∂ν does
not appear in (22); this is what ϕx is for.

Suppose now u ∈ C2(Ū) solves the boundary-value problem (13) for given continuous
functions f , g. Plugging into (22), we obtain

Theorem 2.12. (Representation formula using Green’s function). If u ∈ C2(Ū) solves problem
(13), then

(23) u(x) = −
∫

∂U
g(y)

∂G
∂ν

(x, y)dS(y) +
∫

U
f (y)G(x, y)dy(x ∈ U).

It is usually a difficult matter to construct Green’s function G for the given domain U.
This can be done only when U has simple geometry. We will next identify the case of a
half space, but before this, let us record the general assertion that G is symmetric in the
variables x and y:

Theorem 2.13. (Symmetry of Green’s function). For all x, y ∈ U, x 6= y, we have

G(y, x) = G(x, y).

Proof. Fix x, y ∈ U, x 6= y, and define v(z) := G(x, z), w(z) := G(y, z)(z ∈ U). Then
∆v(z) = 0(z 6= x), ∆w(z) = 0(z 6= y) and w = v = 0 on ∂U. Thus our applying Green’s
identity (Theorem B.3) on V := U − [B(x, ε) ∪ B(y, ε)] for sufficiently small ε > 0 yields∫

V
v∆w − w∆vdz =

∫
∂V

v
∂w
∂ν

− w
∂v
∂ν

dS(z).

Simply observe that ∆w = 0 = ∆v in V, ∂V = ∂U ∪ ∂B(x, ε) ∪ B(y, ε), and v = 0 = w on
∂U. Hence the preceding formula reduces to

(24)
∫

∂B(x,ε)

∂v
∂ν

w − ∂w
∂ν

vdS(z) =
∫

∂B(y,ε)

∂w
∂ν

v − ∂v
∂ν

wdS(z),

ν denoting the inward pointing unit vector field on ∂B(x, ε) ∪ ∂B(y, ε). u is smooth near
x, whence∣∣∣∣∫

∂B(x,ε)

∂w
∂ν

vdS
∣∣∣∣ ⩽ ∥∥∥∥∂w

∂ν

∥∥∥∥
L∞(∂B(x,ε))

sup
∂B(x,ε)

|v|nα(n)εn−1 ⩽ Cεn−1 sup
∂B(x,ε)

|v| = o(1), ε → 0.
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On the other hand, v(z) = Φ(z − x)− ϕx(z), where ϕx is smooth in U. Thus

lim
ε→0

∫
∂B(x,ε)

∂v
∂ν

wdS = lim
ε→0

∫
∂B(x,ε)

∂Φ
∂ν

(x − z)w(z)dS = w(x),

as in the proof of Theorem 2.1. Thus the left-hand side of (24) converges to w(x) as ε → 0.
Likewise the right-hand side converges to v(y). Consequently

G(y, x) = w(x) = v(y) = G(x, y),

as desired.

Green’s function for the half-space Rn
+ = {x = (x1, · · · , xn) ∈ Rn : xn > 0}. Define

x̃ = (x1, · · · , xn−1,−xn) as the reflection of x = (x1, · · · , xn−1, xn), and set

ϕx(y) := Φ(y − x̃) = Φ(y1 − x1, · · · , yn−1 − xn−1, yn + xn)(x, y ∈ Rn
+).

The idea is that the corrector ϕx is built from Φ by "reflecting the singularity" from x ∈ Rn
+

to x̃ /∈ Rn
+. We note ϕx(y) = Φ(y − x) if y ∈ ∂Rn

+, and thus{
∆ϕx = 0 in Rn

+

ϕx = Φ(y − x) on ∂Rn
+,

as required.

Definition 2.4. Green’s function for the half-space Rn
+ is

G(x, y) := Φ(y − x)− Φ(y − x̃)(x, y ∈ Rn
+, x 6= y).

Now we commence with the calculations on ∂G/∂ν(x, y). Firstly,

∂Φ
∂yn

(y − x) =
(

1
n(n − 2)α(n)

1
|y − x|n−2

)′

|y−x|
(|y − x|)′yn =

−1
nα(n)

yn − xn

|y − x|n ,

and then Φyn(y − x̃) =
−1

nα(n)
yn + xn

|y − x̃|n . Hence if y ∈ ∂Rn
+,

∂G
∂ν

(x, y) = (0, · · · , 0,−1) · DG = −Gyn(x, y)

= −
[

−1
nα(n)

(
yn − xn

|y − x|n +
yn + xn

|y − x̃|n

)]
yn=0

|y−x|=|y−x̃|
========= − 2xn

nα(n)
1

|x − y|n .

Suppose now u solves the boundary-value problem

(25)

{
∆u = 0 in Rn

+

u = g on ∂Rn
+,
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Then from (23) we expect

(26) u(x) =
2xn

nα(n)

∫
∂Rn

+

g(y)
|x − y|n dy(x ∈ Rn

+)

to be a representation formula for our solution. The function

K(x, y) :=
2xn

nα(n)
1

|x − y|n (x ∈ Rn
+, y ∈ ∂Rn

+)

is Poisson’s kernel for Rn
+, and (26) is Poisson’s formula.

We must now check directly that formula (26) does indeed provide us with a solution
of the boundary-value problem (25).

Theorem 2.14. (Poisson’s formula for half-space). Assume g ∈ C(Rn−1) ∩ L∞(Rn−1), and
define u by (26). Then
(i) u ∈ C∞(Rn

+) ∩ L∞(Rn
+),

(ii) ∆u = 0 in Rn
+,

and
(iii) lim

x→x0

x∈Rn
+

u(x) = g(x0) for each point x0 ∈ ∂Rn
+.

Proof. Recall that

u(x) =
∫

∂Rn
+

K(x, y)g(y)dy =
∫

∂Rn
+

g(y)
(
−∂G

∂ν
(x, y)

)
dy.

For each fixed x, the mapping y 7→ G(x, y) is harmonic, except for y = x. As G(x, y) =

G(y, x), x 7→ G(x, y) is harmonic, except for x = y. Thus x 7→ − ∂G
∂yn

(x, y) = K(x, y) is
harmonic for any x ∈ Rn

+, y ∈ ∂Rn
+.

A direct calculation, given in Appendix B.7 (cf. Theorem B.7), verifies

(27) 1 =
∫

∂Rn
+

K(x, y)dy

for each x ∈ Rn
+. As g is bounded, u defined by (26) is likewise bounded, i.e. u ∈ L∞(Rn

+).
Since x 7→ K(x, y) is smooth for x 6= y, we easily verify as well u ∈ C∞(Rn

+), with

∆u(x) =
∫

∂Rn
+

∆xK(x, y)g(y)dy = 0(x ∈ Rn
+).

Now fix x0 ∈ ∂Rn
+, ε > 0. Choose δ > 0 so small that

(28) |g(y)− g(x0)| < ε if |y − x0| < δ, y ∈ ∂Rn
+.
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Then if |x − x0| < δ/2, x ∈ Rn
+,

|u(x)− g(x0)| =
∣∣∣∣∫

∂Rn
+

K(x, y)g(y)− g(x0) · 1dy
∣∣∣∣ = ∣∣∣∣∫

∂Rn
+

K(x, y)[g(y)− g(x0)]dy
∣∣∣∣

⩽
∫

∂Rn
+∩B(x0,δ)

K(x, y)|g(y)− g(x0)|dy +
∫

∂Rn
+−B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

= : I + J.

Now (27), (28) imply

I ⩽ ε
∫

∂Rn
+

K(x, y)dy = ε.

Furthermore if |x − x0| ⩽ δ/2 and |y − x0| ⩾ δ, we have

|y − x0| ⩽ |y − x|+ δ

2
⩽ |y − x|+ 1

2
|y − x0|;

and so |y − x| ⩾ 1
2 |y − x0|. Thus

J ⩽ 2‖g‖L∞(∂Rn
+)

∫
∂Rn

+−B(x0,δ)
K(x, y)dy ⩽

4‖g‖L∞(Rn−1)xn

nα(n)

∫
∂Rn

+−B(x0,δ)

1
|x − y|n dy

⩽ 2n+2‖g‖L∞ xn

nα(n)

∫
∂Rn

+−B(x0,δ)
|y − x0|−ndy ⩽ Cxn

∫
∂Rn

+−B(x0,δ)

1
δn dy → 0(xn → 0+).

Adding this with the estimate of I, we deduce |u(x) − g(x0)| ⩽ 2ε, provided |x − x0| is
sufficiently small.

Another example is the ball B(0, r). Define u by

u(x) =
r2 − |x|2
nα(n)r

∫
∂B(0,r)

g(y)
|x − y|n dS(y)(x ∈ B0(0, r)).

and we directly state the theorem.

Theorem 2.15. (Poisson’s formula for ball). Assume g ∈ C(∂B(0, r)) and define u as above. Then
(i) u ∈ C∞(B0(0, r)),
(ii) ∆u = 0 in B0(0, r),
and
(iii) lim

x→x0

x∈B0(0,r)

u(x) = g(x0) for each point x0 ∈ ∂B(0, r).

Energy methods and Dirichlet’s principle. Consider first the boundary-value problem

(29)

{
−∆u = f in U,

u = g on ∂U.

Assume U is open, bounded, and ∂U is C1.

Theorem 2.16. (Uniqueness). There exists at most one solution u ∈ C2(Ū) of (29).
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Proof. Assume ũ is another solution and set w := u − ũ. Then ∆w = 0 in U, w = 0 on ∂U,
and so an integration by parts shows

0 = −
∫

U
w∆wdx =

∫
U

Dw · Dwdx −
∫

∂U
w

∂w
∂ν

dS(x) =
∫

U
|Dw|2dx.

Thus Dw ≡ 0 in U, and, since w = 0 on ∂U, we deduce w = u − ũ ≡ 0 in U.

Next let us demonstrate that a solution of the boundary-value problem (29) for Pois-
son’s equation can be characterized as the minimizer of an appropriate functional. For
this, we define the energy functional

I[w] :=
∫

U

1
2
|Dw|2 − w f dx,

w belonging to the admissible set A := {w ∈ C2(Ū) : w = g on ∂U}.

Theorem 2.17. (Dirichlet’s principle). Assume u ∈ C2(Ū) solves (29). Then

(30) I[u] = min
w∈A

I[w].

Conversely, if u ∈ A satisfies (30), then u solves the boundary-value problem (29).

Proof. (i) Choose w ∈ A. Then (29) implies

0 =
∫

U
(−∆u − f )(u − w)dx.

An integration by parts yields

0 =
∫

U
Du · D(u − w)− f (u − w)dx,

and there is no boundary term since u − w = g − g ≡ 0 on ∂U. Hence∫
U
|Du|2 − u f dx =

∫
U

Du · Dw − w f dx

⩽
∫

U

1
2
|Du|2dx +

∫
U

1
2
|Dw|2 − w f dx,

where we employed the estimates

|Du · Dw| ⩽ |Du||Dw| ⩽ 1
2
|Du|2 + 1

2
|Dw|2,

following from the Cauchy-Schwarz and Cauchy inequalities (ğB.2). Rearranging, we
conclude

I[u] ⩽ I[w](w ∈ A).

Since u ∈ A, (30) follows.
(ii) Now, conversely, suppose (30) holds. For any v ∈ C∞

c (U), write i(τ) := I[u + τv](τ ∈
R). Since u + τv ∈ A for each τ ∈ R, the scalar function i(·) has a minimum at zero, and
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thus i′(0) = 0, provided this derivative exists. But

i(τ) =
∫

U

1
2
|Du + τDv|2 − (u + τv) f dx

=
∫

U

1
2
|Du|2 + τDu · Dv +

τ2

2
|Dv|2 − (u + τv) f dx.

Consequently

i′(τ) =
∫

U
Du · Dv + τ|Dv|2 − v f dx,

=⇒ 0 = i′(0) =
∫

U
Du · Dv − v f dx =

∫
U
(−∆u − f )vdx.

This is valid for each function v ∈ C∞
c (U) and so −∆u = f in U.

2.3 Heat equation

Next we study the heat equation

(31) ut − ∆u = 0

and the nonhomogeneous heat equation

(32) ut − ∆u = f ,

subject to appropriate initial and boundary conditions. They are basic examples of parabolic
PDE. Here t > 0, x ∈ U, where U ⊂ Rn is open. The unknown is u : Ū × [0, ∞) → R, u =

u(x, t), and Laplacian ∆ is taken with respect to the spatial variable x. In (32) the function
f : U × [0, ∞) → R is given.
Fundamental solution. We first seek a solution u with the special structure

(33) u(x, t) =
1
tα

v
( x

tβ

)
(x ∈ Rn, t > 0),

where the constants α, β and the function v : Rn → R must be found. So insert this into
(31), and we obtain

αt−(α+1)v
( x

tβ

)
+ t−α βx

tβ+1 · Dv
( x

tβ

)
+ t−(α+2β)∆v

( x
tβ

)
= 0.

Set y = t−βx, then

αt−(α+1)v(y) + βt−(α+1)y · Dv(y) + t−(α+2β)∆v(y) = 0.

Take β = 1
2 , and all terms containing t vanishes:

αv +
1
2

y · Dv + ∆v = 0.

We simplify further by guessing v to be radial; that is, v(y) = w(|y|) for some w : R → R.
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Thereupon we have

αw +
1
2

rw′ + w′′ +
n − 1

r
w′ = 0

for r = |y| (for the calculation of the last two terms, refer to the fundamental solution of
Laplace’s equation). Now if we set α = n

2 , this becomes

(rn−1w′)′ +
1
2
(rnw)′ = 0

Thus
rn−1w′ +

1
2

rnw = a

for some constant a. Assuming lim
r→∞

w, w′ = 0, we conclude a = 0, whence

w′ = −1
2

rw.

But then for some constant b
w = be−

r2
4 .

Combining this, (33), and our choices on a, b, we conclude that
1

tn/2 w(t−1/2|x|) = b
tn/2 e

−|x|2
4t

solves (31).
This computation motivates the following

Definition 2.5. The function

Φ(x, t) :=

 1
(4πt)n/2 e−

|x|2
4t (x ∈ Rn, t > 0)

0 (x ∈ Rn, t < 0)

is called the fundamental solution of the heat equation.

Notice that Φ is singular at the point (0, 0). The choice of the normalizing constant
(4π)−n/2 is dictated by the following.

Lemma 2.1. (Integral of fundamental solution). For each time t > 0,∫
Rn

Φ(x, t)dx = 1.

Proof. We calculate

∫
Rn

Φ(x, t)dx =
1

(4πt)n/2

∫
Rn

e−
|x|2
4t dx

z= x
2
√

t
=====

1
πn/2

∫
Rn

e−|z|2dz

=
1

πn/2

n

∏
i=1

∫ ∞

−∞
e−z2

i dzi =
1

πn/2 (
√

π)n = 1.

Again we symbolically write

{
Φt − ∆Φ = 0 in Rn × (0, ∞)

Φ = δ0 on Rn × {t = 0}
in view of the follow-
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ing theorem, which is developed to solve the Cauchy problem

(34)

{
ut − ∆u = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Theorem 2.18. (Solution of initial-value problem). Assume g ∈ C(Rn)∩ L∞(Rn), and again
use convolution to define

(35) u = u(x, t) =
∫

Rn
Φ(x − y, t)g(y)dy =

1
(4πt)n/2

∫
Rn

e−
|x−y|2

4t g(y)dy(x ∈ Rn, t > 0).

Then
(i) u ∈ C∞(Rn × (0, ∞)),
(ii) ut(x, t)− ∆u(x, t) = 0(x ∈ Rn, t > 0),
and
(iii) lim

(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = g(x0) for each point x0 ∈ Rn.

Proof. Since t−n/2e−
|x|2
4t is infinitely differentiable, with uniformly bounded derivatives of

all orders, on Rn × [δ, ∞) for each δ > 0, we see that u ∈ C∞(Rn × (0, ∞)). Furthermore

ut(x, t)− ∆u(x, t) =
∫

Rn
[(Φt − ∆xΦ)(x − y, t)]g(y)dy = 0(x ∈ Rn, t > 0)

since Φ itself solves the heat equation.
Fix x0 ∈ Rn, ε > 0. Choose δ > 0 such that |g(y)− g(x0)| < ε, if |y − x0| < δ, y ∈ Rn.

Then if |x − x0| < δ
2 , we have, according to the lemma,

|u(x, t)− g(x0)| =
∣∣∣∣∫

Rn
Φ(x − y, t)[g(y)− g(x0)]dy

∣∣∣∣
⩽
∫

B(x0,δ)
Φ(x − y, t)|g(y)− g(x0)|dy +

∫
Rn−B(x0,δ)

Φ(x − y, t)|g(y)− g(x0)|dy

=:I + J.

Now
I ⩽ ε

∫
Rn

Φ(x − y, t)dy = ε.

Furthermore, if |x − x0| ⩽ δ
2 and |y − x0| ⩾ δ, then |y − x0| ⩽ |y − x|+ δ

2 ⩽ |y − x|+ 1
2 |y −

x0|, thus |y − x| ⩾ 1
2 |y − x0|. Consequently

J ⩽ 2‖g‖L∞(Rn)

∫
Rn−B(x0,δ)

Φ(x − y, t)dy ⩽ C
tn/2

∫
Rn−B(x0,δ)

e−
|x−y|2

4t dy

⩽ C
tn/2

∫
Rn−B(x0,δ)

e−
|y−x0|2

16t dy
z=(y−x0)/

√
t

========= C
∫

Rn−B(x0,δ/
√

t)
e−

|z|2
16 dz

→ 0 as t → 0+.

Hence if |x − x0| < δ
2 and t > 0 is small enough, |u(x, t)− g(x0)| < 2ε.

Remark 2.4. This is exactly the same procedure as in the proof of Theorem 2.14.
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Infinite propagation speed. Notice that if g is bounded, continuous, g ⩾ 0, g 6≡ 0, then
u(x, t) defined by (35) is in fact positive for ALL points x ∈ Rn and times t > 0. We
interpret this observation by saying the heat equation forces infinite propagation speed
for disturbances. If the initial temperature is nonnegative and is positive somewhere, the
temperature at any later time (no matter how small) is everywhere positive.

Nonhomogeneous problem. Now we turn to the nonhomogeneous initial-value problem

(36)

{
ut − ∆u = f in Rn × (0, ∞)

u = 0 on Rn × {t = 0}.

First note that the mapping (x, t) 7→ Φ(x − y, t − s) is a solution of the heat equation (for
given y ∈ Rn, 0 < s < t). Now for fixed s, the function

u = u(x, t; s) =
∫

Rn
Φ(x − y, t − s) f (y, s)dy

solves

(37)

{
ut(·; s)− ∆u(·; s) = 0 in Rn × (s, ∞)

u(·; s) = f (·, s) on Rn × {t = s}

which is just an initial-value problem of the form (34), with the starting time replaced by
t = s and g replaced by f (·, s). Thus u(·; s) is certainly not a solution of (36).

However Duhamel’s principle (see Appendix B.8) asserts that we can build a solution
of (36) out of the solutions of (37), by integrating with respect to s. The idea is to consider

u(x, t) =
∫ t

0
u(x, t; s)ds(x ∈ Rn, t ⩾ 0).

Rewriting, we have

(38)
u(x, t) =

∫ t

0

∫
Rn

Φ(x − y, t − s) f (y, s)dyds

=
∫ t

0

1
(4π(t − s))n/2

∫
Rn

e−
|x−y|2
4(t−s) f (y, s)dyds.

Theorem 2.19. (Solution of nonhomogeneous problem). Assume f ∈ C2
1(R

n × [0, ∞)) and f has
compact support, and define u by (38). Then
(i) u ∈ C2

1(R
n × (0, ∞)),

(ii) ut(x, t)− ∆u(x, t) = f (x, t)(x ∈ Rn, t > 0),
and
(iii) lim

(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = 0 for each point x0 ∈ Rn.

Proof. Since Φ has a singularity at (0, 0), we cannot directly justify differentiating under
the integral sign. We instead proceed somewhat as in the proof of Theorem 2.1.
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First we change variables, to write

u(x, t) =
∫ t

0

∫
Rn

Φ(y, s) f (x − y, t − s)dyds.

As f ∈ C2
1(R

n × [0, ∞)) has compact support and Φ = Φ(y, s) is smooth near s = t > 0,
we compute

ut(x, t) =
∫ t

0

∫
Rn

Φ(y, s) ft(x − y, t − s)dyds +
∫

Rn
Φ(y, t) f (x − y, 0)dy

and
uxixj(x, t) =

∫ t

0

∫
Rn

Φ(y, s) fxixj(x − y, t − s)dyds(i, j = 1, · · · , n).

Thus ut, D2
xu, and likewise u, Dxu, belong to C(Rn × (0, ∞)).

We then calculate

ut(x, t)− ∆u(x, t) =
∫ t

0

∫
Rn

Φ(y, s)
∂

∂t
f (x − y, t − s)dyds +

∫
Rn

Φ(y, t) f (x − y, 0)dy

−
∫ t

0

∫
Rn

Φ(y, s)∆x f (x − y, t − s)dyds

=
∫ t

0

∫
Rn

Φ(y, s)
[(

∂

∂t
− ∆x

)
f (x − y, t − s)

]
dyds +

∫
Rn

Φ(y, t) f (x − y, 0)dy

=
∫ t

ε

∫
Rn

Φ(y, s)
[(

− ∂

∂s
− ∆y

)
f (x − y, t − s)

]
dyds

+
∫ ε

0

∫
Rn

Φ(y, s)
[(

− ∂

∂s
− ∆y

)
f (x − y, t − s)

]
dyds +

∫
Rn

Φ(y, t) f (x − y, 0)dy.

=:Iε + Jε + K.

Now
|Jε| ⩽ (‖ ft‖L∞ + ‖D2 f ‖L∞)

∫ ε

0

∫
Rn

Φ(y, s)dyds ⩽ εC,

by the lemma. Integrating by parts, we also find

Iε =
∫ t

ε

∫
Rn

[(
∂

∂s
− ∆y

)
Φ(y, s)

]
f (x − y, t − s)dyds

+
∫

Rn
Φ(y, ε) f (x − y, t − ε)dy −

∫
Rn

Φ(y, t) f (x − y, 0)dy

=
∫

Rn
Φ(y, ε) f (x − y, t − ε)dy − K.

Hence
ut(x, t)− ∆u(x, t) = lim

ε→0

∫
Rn

Φ(y, ε) f (x − y, t − ε)dy = f (x, t),

the limit as ε → 0 being computed as in the proof of Theorem 2.18:∣∣∣∣∫
Rn

Φ(y, ε) f (x − y, t − ε)dy − f (x, t)
∣∣∣∣ ⩽ ∫

Rn
Φ(y, ε)| f (x − y, t − ε)− f (x, t)|dy

⩽ ε
B(x,δ) part

+ ε
Rn−B(x,δ) part

→ 0(ε → 0).
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Finally, note that

‖u(·, t)‖L∞ ⩽
∣∣∣∣∫ t

0
‖ f ‖L∞

∫
Rn

Φ(x − y, t − s)dyds
∣∣∣∣ ⩽ t‖ f ‖L∞ → 0

as t → 0.

Remark 2.5. We can of course combine Theorem 2.18 and Theorem 2.19 to discover that

u(x, t) =
∫

Rn
Φ(x − y, t)g(y)dy +

∫ t

0

∫
Rn

Φ(x − y, t − s) f (y, s)dyds

is, under the hypotheses on g and f as above, a solution of{
ut − ∆u = f in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Mean-value formula. Fix a time T > 0, and recall the definition of parabolic cylinder UT
and its parabolic boundary ΓT in Appendix A.1.5. Note carefully that UT includes the top
U × {t = T}. The parabolic boundary comprises the bottom and vertical sides, but not
the top.

Though there is no simple formula analogous to the mean-value property for harmonic
functions, we still want to derive a similar theorem. For the heat equation, we need to
define the next

Definition 2.6. For fixed x ∈ Rn, t ∈ R, r > 0, we define the "heat ball"

E(x, t; r) :=
{
(y, s) ∈ Rn+1 : s ⩽ t, Φ(x − y, t − s) ⩾ 1

rn

}
.

Remark 2.6. Let us gain some idea of what E(x, t; r) looks like. This is a region in space-
time, the boundary of which is a level set of Φ(x − y, t − s). Note that the point (x, t) is at
the center of the top. Specifically, It is defined by

1
(4π(t − s))n/2 e−

|x−y|2
4(t−s) ⩾ 1

rn .

Thus in the time direction, we have t ⩾ s ⩾ t − r2

4π , where the lower bound comes from
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the fact that e−
|x−y|2
4(t−s) ⩽ 1. Furthermore

E(x, t; r) ∩ {s = 0} = E(x, t; r) ∩ {s = t} = {x}.

Next, to find out the correct formula, we need to find a kernel K(x − y, t − s) such that∫∫
E(x,t;r)

K(x − y, t − s)dyds

is independent of r. Notice that

1
(4π(t − s))n/2 e−

|x−y|2
4(t−s) ⩾ 1

rn ⇐⇒ 1
(4π(t′ − s′))n/2 e

− |x′−y′ |2
4(t′−s′) ⩾ 1,

where t′ = t/r2, s′ = s/r2, x′ = x/r, y′ = y/r. Thus we have∫
E(x,t;r)

K(x − y, t − s)dyds =
∫

E(x′,t′;1)
K(x − y, t − s)rn+2dy′ds′.

This implies
K(x′, t′) = K(x, t)rn+2

when x′ = x/r, t′ = t/r2. Now note that

E(0, 0; 1) ≡
{

1
(4πt)n/2 e

|x|2
4t ⩾ 1

}
=

{
0 ⩽ t ⩽ 1

4π
; |x|2 ⩽ (2nt) log

1
4πt

}
,

and the integral over E(0, 0; 1) becomes

∫ 1/4π

0
t−2
[∫

|x|2⩽2nt ln 1
4πt

|x|2dx
]

dt =
nπn/2

n + 2
2(n+2)/2n(n+2)/2

Γ
(n

2 + 1
) ∫ 1

4π

0
t

n−2
n

(
ln

1
4πt

) n
2+1

dt.

Here we have used polar coordinates and the formula α(n) = πn/2

Γ( n
2+1)

for the volume of

n-dimension balls. Now setting s = 4πt and using the formulas

λ−zΓ(z) =
∫ 1

0
tλ−1

(
ln

1
t

)z−1

dt, Γ(z + 1) = zΓ(z)

we will see after careful calculations that most terms cancel out and what remains is 4, i.e.∫
E(0,0;1)

|x|2
t2 dxdt = 4.

This is exactly what we need.

Remark 2.7. Since we have mentioned E(0, 0; 1), we can draw exactly what it looks like
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when n = 1. Now

E(0, 0; 1) =
{
(y, s) ∈ R2 : s ⩽ 0,

1
(4π(−s))1/2 exp

(
−| − y|2

4(−s)

)
⩾ 1

}
=

{
(y, s) ∈ R2 : 0 < −s ⩽ 1

4π
, y2 ⩽ 2s ln(−4πs)

}
.

To get −s ⩽ 1
4π one simply observe that exp

(
− |−y|2

4(−s)

)
⩽ 1(s < 0), and thus

√
−4πs ⩽ 1.

Hence the boundary of the heat ball is like this:

Theorem 2.20. (A mean-value property for the heat equation). Let u ∈ C2
1(UT) solve the heat

equation. Then

u(x, t) =
1

4rn

∫∫
E(x,t;r)

u(y, s)
|x − y|2
(t − s)2 dyds

for each E(x, t; r) ⊂ UT.

Proof. See pp53-54 of the book. There is a similar proof of Problem 2.17.

Remark 2.8. The right-hand side involves only u(y, s) for times s ⩽ t. This is reasonable,
as the value u(x, t) should not depend upon future times.

Strong maximum principle, uniqueness.

Theorem 2.21. (Strong maximum principle for the heat equation). Suppose u ∈ C2
1(UT) ∩

C(ŪT) solves the heat equation in UT.
(i) Then

max
ŪT

u = max
ΓT

u.

(ii) Furthermore, if U is connected and there exists a point (x0, t0) ∈ UT such that

u(x0, t0) = max
ŪT

u,

then u is constant in Ūt0 .

Remark 2.9. Assertion (i) is the maximum principle for the heat equation and (ii) is the
strong maximum principle. Similar assertions are valid with "min" replacing "max". If u
attains its maximum (or minimum) at an interior point, then u is constant at all earlier
times. This means, the solution will be constant on the time interval [0, t0] provided the
initial and boundary conditions are constant. However, the solution may change at times
t > t0, provided the boundary conditions alter after t0.
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Proof. Suppose there exists a point (x0, t0) ∈ UT with u(x0, t0) = M := max
ŪT

u. Then for

all sufficiently small r > 0, E(x0, t0; r) ⊂ UT; and we employ the mean-value property to
deduce

M = u(x0, t0) =
1

4rn

∫∫
E(x0,t0;r)

u(y, s)
|x0 − y|2
(t0 − s)2 dyds ⩽ M,

since

1 =
1

4rn

∫∫
E(x0,t0;r)

|x0 − y|2
(t0 − s)2 dyds.

Equality holds only if u ≡ M within E(x0, t0; r). Consequently u(y, s) = M for all (y, s) ∈
E(x0, t0; r).

Draw any line segment L in UT connecting (x0, t0) with some other point (y0, s0) ∈ UT,
with s0 < t0. Consider

r0 := min{s ⩾ s0 : u(x, t) = M for all points (x, t) ∈ L, s ⩽ t ⩽ t0}.

Since u is continuous, the minimum is attained. For the sake of contradiction assume
r0 > s0. Then u(z0, r0) = M for some point (z0, r0) on L ∩ UT and so u(y, s) ≡ M on
E(z0, r0; r) for all sufficiently small r > 0. Since E(z0, r0; r) contains some point (x, t) with
r0 − σ ⩽ t < r0 for some small σ > 0, we have a contradiction. Thus r0 = s0, and hence
u ≡ M on L.

Now fix any x ∈ U and 0 ⩽ t < t0. There exist points {x0, x1, · · · , xm = x} such that
the line segments in Rn connecting xi−1 to xi lie in U for i = 1, · · · , m. (This follows since
U is connected.) Select times t0 > t1 > · · · > tm = t. Then the line segments in Rn+1

connecting (xi−1, ti−1) to (xi, ti)(i = 1, · · · , m) lie in UT. According to the previous step,
u ≡ M on each such segment and so u(x, t) = M.

An important application of the maximum principle is the following uniqueness as-
sertion.

Theorem 2.22. (Uniqueness on bounded domains). Let g ∈ C(ΓT), f ∈ C(UT). Then there
exists at most one solution u ∈ C2

1(UT) ∩ C(ŪT) of the initial/boundary-value problem

(39)

{
ut − ∆u = f in UT

u = g on ΓT.

Proof. If u and ũ are two solutions of (39), apply Theorem 2.21 to w := ±(u − ũ).

We next extend our uniqueness assertion to the Cauchy problem – the initial-value
problem for U = Rn. As the region is no longer bounded, we must introduce some
control on the behavior of solutions for large |x|.
Theorem 2.23. (Maximum principle for the Cauchy problem). Suppose u ∈ C2

1(R
n × (0, T]) ∩

C(Rn × [0, T]) solves {
ut − ∆u = 0 in Rn × (0, T)

u = g on Rn × {t = 0}

and satisfies the growth estimate

u(x, t) ⩽ Aea|x|2(x ∈ Rn, 0 ⩽ t ⩽ T)
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for constants A, a > 0. Then
sup

Rn×[0,T]
u = sup

Rn
g.

Proof. First assume 4aT < 1 in which case 4a(T + ε) < 1 for some ε > 0. Fix y ∈ Rn, µ > 0,
and define

v(x, t) := u(x, t)− µ

(T + ε − t)n/2 e
|x−y|2

4(T+ε−t) (x ∈ Rn, t > 0).

A direct calculation shows

vt − ∆v = 0 in Rn × (0, T].

Fix r > 0 and set U := B0(y, r), and then UT = B0(y, r) × (0, T]. Then according to
Theorem 2.21,

(40) max
ŪT

v = max
ΓT

v.

For x ∈ Rn,

(41) v(x, 0) = u(x, 0)− µ

(T + ε)n/2 e
|x−y|2
4(T+ε) ⩽ u(x, 0) = g(x);

and if |x − y| = r, 0 ⩽ t ⩽ T, then

v(x, t) = u(x, t)− µ

(T + ε − t)n/2 e
r2

4(T+ε−t) ⩽ Aea|x|2 − µ

(T + ε − t)n/2 e
r2

4(T+ε−t)

⩽ Aea(|y|+r)2 − µ

(T + ε)n/2 e
r2

4(T+ε) .

Because 4a(T + ε) < 1, we have 1
4(T+ε)

> a, and so 1
4(T+ε)

= a + γ for some γ > 0. Then
we continue to find

v(x, t) ⩽ Aea(|y|+r)2 − µ(4(a + γ))n/2e(a+γ)r2 ⩽ sup
Rn

g,

for r selected sufficiently large. Thus this combined with (40) and (41), imply that v(y, t) ⩽
sup
Rn

g for all y ∈ Rn, 0 ⩽ t ⩽ T. Now let µ → 0.

In the general case that 4aT < 1 fails, we repeatedly apply the result above on the time
intervals [0, T1], [T1, 2T1], etc., for T1 = 1

8a .

Theorem 2.24. (Uniqueness for Cauchy problem). Let g ∈ C(Rn), f ∈ C(Rn × [0, T]). Then
there exists at most one solution u ∈ C2

1(R
n × (0, T]) ∩ C(Rn × [0, T]) of the initial-value prob-

lem {
ut − ∆u = 0 in Rn × (0, T)

u = g on Rn × {t = 0}

satisfying the growth estimate

u(x, t) ⩽ Aea|x|2(x ∈ Rn, 0 ⩽ t ⩽ T)
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for constants A, a > 0.

Proof. If u and ũ both satisfy the conditions, we apply Theorem 2.23 to w := ±(u − ũ) to
know that w ≡ 0 in Rn × (0, T).

Regularity.

Theorem 2.25. (Smoothness). Suppose u ∈ C2
1(UT) solves the heat equation in UT. Then

u ∈ C∞(UT).

Proof. Define C(x, t; r) = {(y, s) : |x − y| ⩽ r, t − r2 ⩽ s ⩽ t} to be the closed circular
cylinder of radius r, height r2, and top center point (x, t).

Fix (x0, t0) ∈ UT and choose r > 0 so small that C := C(x0, t0; r) ⊂ UT. Define also the
smaller cylinders C′ := C(x0, t0; 3

4r), C′′ := C(x0, t0; 1
2r), which have the same top center

point (x0, t0).
Now we set a smooth cutoff function ζ = ζ(x, t) such that 0 ⩽ ζ ⩽ 1, ζ ≡ 1 on C′

ζ ≡ 0 near the parabolic boundary of C.

Extend ζ ≡ 0 in (Rn × [0, t0])− C.

Assume temporarily that u ∈ C∞(UT) and set

v(x, t) := ζ(x, t)u(x, t)(x ∈ Rn, 0 ⩽ t ⩽ t0).

Then
vt = ζut + ζtu, ∆v = ζ∆u + 2Dζ · Du + u∆ζ.

Consequently vt −∆v = ζtu− 2Dζ · Du− u∆ζ =: f̃ in Rn × (0, t0) and v = 0 on Rn ×{t =
0}. Now set

ṽ(x, t) :=
∫ t

0

∫
Rn

Φ(x − y, t − s) f̃ (y, s)dyds,

and according to Theorem 2.19, ṽ solves{
ṽt − ∆ṽ = f̃ in Rn × (0, t0)

ṽ = 0 on Rn × {t = 0}.
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Since |v|, |ṽ| ⩽ A for some constant A, Theorem 2.24 implies that v ≡ ṽ; that is,

v(x, t) =
∫ t

0

∫
Rn

Φ(x − y, t − s) f̃ (y, s)dyds.

Now suppose (x, t) ∈ C′′. As ζ ≡ 0 off C, then we have

(42)
u(x, t) =

∫∫
C

Φ(x − y, t − s) f̃ (y, s)dyds =
∫∫

C
Φ(x − y, t − s)(vs − ∆v)dyds

=
∫∫

C
Φ(x − y, t − s)[u(y, s)(ζs(y, s)− ∆ζ(y, s))− 2Dζ(y, s) · Du(y, s)]dyds.

Note in the equation that∫∫
C

Dy(Dζ(y, s)Φ(x − y, t − s)u(y, s))dyds

=
∫ t

0
ds
∫

B(x0,r)
Dy(Dyζ(y, s)Φ(x − y, t − s)u(y, s))dy

=
∫ t

0
ds
∫

∂B(x0,r)
Φ(x − y, t − s)u(y, s) (Dζ(y, s))

=0 on ∂C
·νdS(y) = 0.

This implies, using integration by parts,

(43)
0 = 2

[ ∫∫
C

∆ζ(y, s)Φ(x − y, t − s)u(y, s)+Dζ(y, s)DyΦ(x − y, t − s)u(y, s)

+ Dζ(y, s)Φ(x − y, t − s)Du(y, s)dyds
]

.

Adding (43) to (42), we obtain

(44)
u(x, t) =

∫∫
C

u(y, s)
[
Φ(x − y, t − s)(ζs(y, s)− ∆ζ(y, s))

+ 2DyΦ(x − y, t − s) · Dζ(y, s)
]
dyds.

We have proved this formula assuming u ∈ C∞. If u satisfies only the hypotheses of the
theorem, we derive (44) with uε = ηε ∗ u replacing u, ηε being the standard mollifier in the
variables x and t, and let ε → 0.

Formula (44) has the form

u(x, t) =
∫∫

C
K(x, t, y, s)u(y, s)dyds((x, t) ∈ C′′),

where K(x, t, y, s) = 0 for all (y, s) ∈ C′ since ζ ≡ 1 on C′. Note also K is smooth on C −C′.
Now we see u is C∞ within C′′.

Remark 2.10. This regularity assertion is valid even if u attains nonsmooth boundary
values on ΓT.

Energy methods. We investigate again the initial/boundary-value problem (39). We have
seen uniqueness in Theorem 2.22, but now, by analogy, with Laplace’s equation, we pro-
vide an alternative argument. Assume as usual U ∈ Rn is open and bounded, and ∂U is
C1. T > 0 is given.
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Theorem 2.26. (Uniqueness). There exists only one solution u ∈ C2
1(ŪT) of (39).

Proof. If ũ is another solution, then w := u − ũ solves{
wt − ∆w = 0 in UT

w = 0 on ΓT.

Set e(t) :=
∫

U
w2(x, t)dx(0 ⩽ t ⩽ T), and so

e′(t) = 2
∫

U
wwtdx = 2

∫
U

w∆wdx = 2
[
−
∫

U
Dw · Dwdx +

∫
U

w
∂w
∂ν

dS
]

= −2
∫

U
|Dw|2dx ⩽ 0.

Hence e(t) ⩽ e(0) = 0, showing that w = u − ũ ≡ 0 in UT.

Remark 2.11. Compare this theorem with Theorem 2.16.

A more subtle question asks about uniqueness backwards in time. Suppose u and ũ
are both smooth solutions of the heat equation in UT, with the same boundary conditions
on ∂U:

(45)

{
ut − ∆u = 0 in UT

u = g on ∂U × [0, T],

(46)

{
ũt − ∆ũ = 0 in UT

ũ = g on ∂U × [0, T].

Note that we do NOT suppose u = ũ at time t = 0.

Theorem 2.27. (Backwards uniqueness). Suppose u, ũ ∈ C2(ŪT) solve (45), (46). If

u(x, T) = ũ(x, T)(x ∈ U),

then u ≡ ũ within UT.

Proof. Again write w := u − ũ and set

e(t) :=
∫

U
w2(x, t)dx(0 ⩽ t ⩽ T).

As before
e′(t) = −2

∫
U
|Dw|2dx,

and

e′′(t) = −4
∫

U
Dw · Dwtdx = −4

[
−
∫

U
wt∆wdx +

∫
∂U

wt
∂w
∂ν

dS
]

= 4
∫

U
∆w · wtdx = 4

∫
U
(∆w)2dx
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since wt − ∆w = 0 in UT. Now because w = 0 on ∂U, we employ Cauchy-Schwarz
inequality:

∫
U
|Dw|2dx = −

∫
U

w∆wdx ⩽
(∫

U
w2dx

)1/2 (∫
U
(∆w)2dx

)1/2

.

Thus

(e′(t))2 = 4
(∫

U
|Dw|2dx

)2

⩽ e(t)e′′(t),

i.e. e(t)e′′(t) ⩾ (e′(t))2(0 ⩽ t ⩽ T).
Now if e(t) = 0 for all 0 ⩽ t ⩽ T, we are done. Otherwise there exists an interval

[t1, t2] ⊂ [0, T], with e(t) > 0 for t1 ⩽ t < t2, and e(t2) = 0. Write f (t) := ln e(t)(t1 ⩽ t <
t2). Then

f ′′(t) =
e′′(t)
e(t)

− e′(t)2

e(t)2 ⩾ 0,

and so f is convex on the interval (t1, t2). Consequently if 0 < τ < 1, t1 < t < t2, we have

f ((1 − τ)t1 + τt) ⩽ (1 − τ) f (t1) + τ f (t).

Hence ln e((1 − τ)t1 + τt) ⩽ (1 − τ) ln e(t1) + τ ln e(t2), which further reduces to

e((1 − τ)t1 + τt) ⩽ e1−τ(t1)eτ(t).

But
0 ⩽ e((1 − τ)t1 + τt2) ⩽ e(t1)

1−τe(t2)
τ = 0(0 < τ < 1),

contradicting the claim that e(t) > 0 for t1 ⩽ t < t2.

Remark 2.12. In other words, if two temperature distributions on U agree at some time
T > 0 and have had the same boundary values for times 0 ⩽ t ⩽ T, then these tempera-
tures must have been identically equal within U at all earlier times.

2.4 Wave equation

In this section we investigate the wave equation

(47) utt − ∆u = 0

and the nonhomogeneous wave equation

(48) utt − ∆u = f ,

subject to appropriate initial and boundary conditions. Here t > 0 and x ∈ U, where
U ⊂ Rn is open. The unknown is u = u(x, t) : Ū × [0, ∞) → R. In (48) the function
f : U × [0, ∞) → R is given.

Remark 2.13. We shall discover that solutions of the wave equation behave quite differ-
ently than solutions of Laplace’s equation or the heat equation. Please always pay atten-
tion to the difference between them.
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Solution for n = 1, d’Alembert’s formula. We first focus our attention on the initial-value
problem for the one-dimensional wave equation in all of R:

(49)

 utt − uxx = 0 in R × (0, ∞)

u = g, ut = h on R × {t = 0},

where g, h are given. We desire to derive a formula for u in terms of g and h.
Let us first note that the PDE in (49) can be "factored", to read(

∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u = utt − uxx = 0.

Write v(x, t) :=
(

∂

∂t
− ∂

∂x

)
u(x, t), and then vt(x, t) + vx(x, t) = 0(x ∈ R, t > 0). This is a

transport equation with constant coefficients. Applying the formula for the homogeneous
transport equation (with n = 1, b = 1), we find v(x, t) = a(x − t) for for a(x) := v(x, 0).
Now we have

ut(x, t)− ux(x, t) = a(x − t) in R × (0, ∞).

This is a nonhomogeneous transport equation; so the formula u(x, t) = g(x − tb) +∫ t

0
f (x + (s − t)b, s)ds (with n = 1, b = −1, f (x, t) = a(x − t)) implies for b(x) := u(x, 0)

that

u(x, t) =
∫ t

0
a(x + (t − s)− s)ds + b(x + t)

x+t−2s=y
=======

1
2

∫ x+t

x−t
a(y)dy + b(x + t).

We lastly invoke the initial conditions of (49) to compute a and b. The first condition gives
b(x) = g(x), while the second implies a(x) = v(x, 0) = ut(x, 0)− ux(x, 0) = h(x)− g′(x).
Our substitution now yields

u(x, t) =
1
2

∫ x+t

x−t
(h(y)− g′(y))dy + g(x + t).

Hence

(50) u(x, t) =
1
2
[g(x + t) + g(x − t)] +

1
2

∫ x+t

x−t
h(y)dy(x ∈ R, t ⩾ 0).

This is d’Alembert’s formula.

Theorem 2.28. (Solution of wave equation, n = 1). Assume g ∈ C2(R), h ∈ C1(R), and define
u by d’Alembert’s formula (50). Then
(i) u ∈ C2(R × [0, ∞)),
(ii) utt − uxx = 0 in R × (0, ∞),
and
(iii) lim

(x,t)→(x0,0)
t>0

u(x, t) = g(x0), lim
(x,t)→(x0,0)

t>0

ut(x, t) = h(x0) for each point x0 ∈ R.

Proof. This is a straightforward calculation.

Remark 2.14. (i) Our solution u has the form u(x, t) = F(x + t) + G(x − t) for appropriate
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F and G. Conversely any function of this form solves utt − uxx = 0. Hence the general
solution of the one-dimensional wave equation is a sum of the general solution of ut −
ux = 0 and that of ut + ux = 0. This is a consequence of the factorization.

(ii) if g ∈ Ck and h ∈ Ck−1, then u ∈ Ck but is not in general smoother.

A reflection method. To illustrate an application of d’Alembert’s formula, let us next con-
sider this initial/boundary-value problem on R+ = {x > 0}:

(51)


utt − uxx = 0 in R+ × (0, ∞)

u = g, ut = h on R+ × {t = 0}
u = 0 on {x = 0} × (0, ∞),

where g, h are given, with g(0) = h(0) = 0.
We convert (51) into the form (49) by extending u, g, h to all of R by odd reflection.

That is, we set

ũ(x, t) :=

{
u(x, t) (x ⩾ 0, t ⩾ 0)

−u(−x, t) (x ⩽ 0, t ⩾ 0),

g̃(x) :=

{
g(x) (x ⩾ 0)

−g(−x) (x ⩽ 0),

h̃(x) :=

{
h(x) (x ⩾ 0)

−h(−x) (x ⩽ 0).

Then (51) becomes {
ũtt = ũxx in R × (0, ∞)

ũ = g̃, ũt = h̃ on R × {t = 0}.

Hence d’Alembert’s formula (50) implies

ũ(x, t) =
1
2
[g̃(x + t) + g̃(x − t)] +

1
2

∫ x+t

x−t
h̃(y)dy.

Then

(52) u(x, t) =

{
1
2 [g(x + t) + g(x − t)] + 1

2

∫ x+t
x−t h(y)dy if x ⩾ t ⩾ 0

1
2 [g(x + t)− g(t − x)] + 1

2

∫ x+t
−x+t h(y)dy if 0 ⩽ x ⩽ t.

Spherical means. Now suppose n ⩾ 2, m ⩾ 2, and u ∈ Cm(Rn × [0, ∞)) solves the initial-
value problem

(53)

{
utt − ∆u = 0 in Rn × (0, ∞)

u = g, ut = h on Rn × {t = 0}.

Let x ∈ Rn, t > 0, r > 0. Define

U(x; r, t) := −
∫

∂B(x,r)
u(y, t)dS(y),

35



the average of u(·, t) over the sphere ∂B(x, r). Similarly,

G(x; r) := −
∫

∂B(x,r)
g(y)dS(y), H(x; r) := −

∫
∂B(x,r)

h(y)dS(y).

For fixed x, we hereafter regard U as a function of r and t.

Lemma 2.2. (Euler-Poisson-Darboux equation). Fix x ∈ Rn, and let u satisfy (53). Then U ∈
Cm(R+ × [0, ∞)) andUtt − Urr −

n − 1
r

Ur = 0 in R+ × (0, ∞)

U = G, Ut = H on R+ × {t = 0}.

Remark 2.15. The term Urr +
n−1

r Ur is the radial part of the Laplacian ∆ in polar coordi-
nates.

Proof. As in the proof of Theorem 2.2 we compute for r > 0

(54) Ur(x; r, t) =
r
n
−
∫

B(x,r)
∆u(y, t)dy.

From this we deduce lim
r→0+

Ur(x; r, t) = 0. Next we differentiate (54) to discover that

Urr(x; r, t) =
∂

∂r

(
r
n

1
α(n)rn

∫
B(x,r)

∆u(y, t)dy
)

=
1

nα(n)

[
(1 − n)r−n

∫
B(x,r)

∆u(y, t)dy +
1

rn−1
∂

∂r

∫
B(x,r)

∆udy
]

=
1 − n

nα(n)rn

∫
B(x,r)

∆udy +
1

nα(n)rn−1
∂

∂r

∫ r

0
ds
∫

∂B(x,s)
∆udS(y)

=

(
1
n
− 1
)
−
∫

B(x,r)
∆udy +−

∫
∂B(x,r)

∆udS.

Thus lim
r→0+

Urr(x; r, t) =
1
n

∆u(x, t). We can continue computing Urrr, etc., and so verify

that U ∈ Cm(R+ × [0, ∞)).
Continuing the calculation above, we see from (54) that

Ur =
r
n
−
∫

B(x,r)
uttdy by (53)

=
1

nα(n)
1

rn−1

∫
B(x,r)

uttdy.

And so
(rn−1Ur)r =

1
nα(n)

∫
∂B(x,r)

uttdS = rn−1−
∫

∂B(x,r)
uttdS = rn−1Utt.

It follows immediately that Utt − Urr − n−1
r Ur = 0.

Solution for n = 3, Kirchhoff’s formula. Let us take n = 3, and suppose u ∈ C2(R3 ×
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[0, ∞)) solves (53). Recall the definitions of U, G, H and then set

Ũ := rU, G̃ := rG, H̃ := rH.

We now assert that Ũ solves

(55)


Ũtt − Ũrr = 0 in R+ × (0, ∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0, ∞).

Indeed, by

Ũtt = rUtt = r
[

Urr +
2
r

Ur

]
by Lemma 2.2, with n = 3

= rUrr + 2Ur = (U + rUr)r = Ũrr.

Notice also that G̃rr(0) = 0. Applying formula (52) to (55), we find for 0 ⩽ r ⩽ t

Ũ(x; r, t) =
1
2
[G̃(r + t)− G̃(t − r)] +

1
2

∫ r+t

−r+t
H̃(y)dy.

Since lim
r→0+

U(x; r, t) = u(x, t), we conclude that

u(x, t) = lim
r→0+

Ũ(x; r, t)
r

= lim
r→0+

[
G̃(t + r)− G̃(t − r)

2r
+

1
2r

∫ t+r

t−r
H̃(y)dy

]
= G̃′(t) + H̃(t).

By definitions of G̃ and H̃ we deduce

(56) u(x, t) =
∂

∂t

(
t−
∫

∂B(x,t)
gdS

)
+ t−
∫

∂B(x,t)
hdS.

But
−
∫

∂B(x,t)
g(y)dS(y) = −

∫
∂B(0,1)

g(x + tz)dS(z);

and so

∂

∂t

(
−
∫

∂B(x,t)
gdS

)
= −
∫

∂B(0,1)
Dg(x + tz) · zdS(z) = −

∫
∂B(x,t)

Dg(y) ·
(

y − x
t

)
dS(y).

Therefore we know
∂

∂t

(
t−
∫

∂B(x,t)
gdS

)
and hence

(57) u(x, t) = −
∫

∂B(x,t)
th(y) + g(y) + Dg(y) · (y − x)dS(y)(x ∈ R3, t > 0).

This is Kirchhoff’s formula.
Solution for n = 2, Poisson’s formula. Now no transformation works to convert Euler-
Poisson-Darboux equation into the one-dimensional wave equation when n = 2. Instead
we will take (53) for n = 2 and simply regard it as a problem for n = 3, in which the third
spatial variable x3 does not appear. Indeed, assuming u ∈ C2(R2 × [0, ∞)) solves (53) for
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n = 2, let us write ū(x1, x2, x3, t) := u(x1, x2, t). Then (53) implies ūtt − ∆ū = 0 in R3 × (0, ∞)

ū = ḡ, ūt = h̄ on R3 × {t = 0},

for ḡ(x1, x2, x3) := g(x1, x2), h̄(x1, x2, x3) := h(x1, x2). If we write x = (x1, x2) ∈ R2 and
x̄ = (x1, x2, 0) ∈ R3, then Kirchhoff’s formula in the form (56) imply

(58) u(x, t) = ū(x̄, t) =
∂

∂t

(
t−
∫

∂B̄(x̄,t)
ḡdS̄

)
+ t−
∫

∂B̄(x̄,t)
h̄dS̄,

where B̄(x̄, t) denotes the ball in R3 with center x̄, radius t > 0 and where dS̄ denotes
two-dimensional surface measure on ∂B̄(x̄, t). Observe that

−
∫

∂B̄(x̄,t)
ḡdS̄ =

1
4πt2

∫
∂B̄(x̄,t)

ḡ(y)dS̄(y) =
2

4πt2

∫
B(x,t)

g(y)
√

1 + |Dγ(y)|2dy,

where γ(y) =
√

t2 − |y − x|2 for y ∈ B(x, t). The factor "2" enters since ∂B̄(x̄, t) consists of

two hemispheres. Thus Dγ(y) =
|y − x|√

t2 − |y − x|2
, and

√
1 + |Dγ(y)|2 =

(
t2

t2 − |y − x|2

)1/2

,

and hence

−
∫

∂B̄(x̄,t)
ḡdS̄ =

1
2πt

∫
B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy =

t
2
−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy.

Consequently (58) becomes

u(x, t) =
∂

∂t

(
t2

2
−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy

)
+

t2

2
−
∫

B(x,t)

h(y)
(t2 − |y − x|2)1/2 dy.

But

t2−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy = t−

∫
B(0,1)

g(x + tz)
(1 − |z|2)1/2 dz,

and so
∂

∂t

(
t2−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy

)
= −
∫

B(0,1)

g(x + tz)
(1 − |z|2)1/2 dz + t−

∫
B(0,1)

Dg(x + tz) · z
(1 − |z|2)1/2 dz

= t−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy + t−

∫
B(x,t)

Dg(y) · (y − x)
(t2 − |y − x|2)1/2 dy.

Hence we obtain the relation

(59) u(x, t) =
1
2
−
∫

B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)
(t2 − |y − x|2)1/2 dy

for x ∈ R2, t > 0. This is Poisson’s formula.

Remark 2.16. The trick of solving the problem for n = 3 first and then dropping to n = 2
is the method of descent.
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Conclusions of cases n > 3. In this part, you only need to notice the differentiability of
the solution, while the rest is for reference only. First, for odd n ⩾ 3, we again solve the
Euler-Poisson-Darboux PDE to gain the solution.

Theorem 2.29. (Solution of wave equation in odd dimensions). Assume n is an odd integer, n ⩾ 3,
and suppose also g ∈ Cm+1(Rn), h ∈ Cm(Rn), for m = n+1

2 . Define u by

u(x, t) =
1

γn

[
∂

∂t

(
1
t

∂

∂t

) n−3
2
(

tn−2−
∫

∂B(x,t)
gdS

)
+

(
1
t

∂

∂t

) n−3
2
(

tn−2−
∫

∂B(x,t)
hdS

)]
,

where n is odd, γn = 1 · 3 · 5 · · · (n − 2), x ∈ Rn and t > 0. Then
(i) u ∈ C2(Rn × [0, ∞)),
(ii) utt − ∆u = 0 in Rn × (0, ∞),
and
(iii) lim

(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = g(x0), lim
(x,t)→(x0,0)

x∈Rn,t>0

ut(x, t) = h(x0) for each point x0 ∈ Rn.

While for even n, we use the method of descent again. Define u by

u(x, t) =
1

γn

[
∂

∂t

(
1
t

∂

∂t

) n−2
2
(

tn−
∫

B(x,t)

g(y)
(t2 − |y − x|2)1/2 dy

)
+

(
1
t

∂

∂t

) n−2
2
(

tn−
∫

B(x,t)

h(y)
(t2 − |y − x|2)1/2 dy

) ]
,

where n is even, γn = 2 · 4 · · · (n − 2) · n, x ∈ Rn and t > 0. Then

Theorem 2.30. (Solution of wave equation in even dimensions). Assume n is an even integer,
n ⩾ 2, and suppose also g ∈ Cm+1(Rn), h ∈ Cm(Rn), for m = n+2

2 . Define u as above. Then
(i) u ∈ C2(Rn × [0, ∞)),
(ii) utt − ∆u = 0 in Rn × (0, ∞),
and
(iii) lim

(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = g(x0), lim
(x,t)→(x0,0)

x∈Rn,t>0

ut(x, t) = h(x0) for each point x0 ∈ Rn.

Remark 2.17. In contrast to Theorem 2.29, to compute u(x, t) for even n we need informa-
tion on u = g, ut = h on all of B(x, t) and not just on ∂B(x, t).

Huygens’ principle. Comparing the two theorems above, we observe that if n is odd
and n ⩾ 3, the data g and h at a given point x ∈ Rn affect the solution u only on the
boundary {(y, t) : t > 0, |x − y| = t} of the cone C = {(y, t) : t > 0, |x − y| < t}. On
the other hand, if n is even, the data g and h affect u within all of C. In other words, a
"disturbance" originating at x spreads along a sharp wavefront in odd dimensions, but in
even dimensions it continues to have effects even after the leading edge of the wavefront
passes. This is Huygens’ principle.

Nonhomogeneous problem. We next investigate

(60)

{
utt − ∆u = f in Rn × (0, ∞)

u = 0, ut = 0 on Rn × {t = 0}.
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Motivated by Duhamel’s principle (cf. Theorem 2.19 and Appendix B.8), we define u =

u(x, t; s) to be the solution of{
utt(·; s)− ∆u(·; s) = 0 in Rn × (s, ∞)

u(·; s) = 0, ut(·; s) = f (·, s) on Rn × {t = s}.

Now set

(61) u(x, t) :=
∫ t

0
u(x, t; s)ds(x ∈ Rn, t ⩾ 0).

Duhamel’s principle asserts this is a solution of

(62)

 utt − ∆u = f in Rn × (0, ∞)

u = 0, ut = 0 on Rn × {t = 0}.

Theorem 2.31. (Solution of nonhomogeneous wave equation). Assume that n ⩾ 2 and f ∈
C[n/2]+1(Rn × [0, ∞)). Define u by (61). Then
(i) u ∈ C2(Rn × [0, ∞)),
(ii) utt − ∆u = f in Rn × (0, ∞),
and
(iii) lim

(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = 0, lim
(x,t)→(x0,0)

x∈Rn,t>0

ut(x, t) = 0 for each point x0 ∈ Rn.

Proof. The first assertion is straightforward from Theorem 2.29 and Theorem 2.30.
We then compute

ut(x, t) = u(x, t; t) +
∫ t

0
ut(x, t; s)ds =

∫ t

0
ut(x, t; s)ds,

utt(x, t) = ut(x, t; t) +
∫ t

0
utt(x, t; s)ds = f (x, t) +

∫ t

0
utt(x, t; s)ds.

Furthermore

∆u(x, t) =
∫ t

0
∆u(x, t; s)ds =

∫ t

0
utt(x, t; s)ds.

Thus utt(x, t)− ∆u(x, t) = f (x, t)(x ∈ Rn, t > 0) and u(x, 0) = ut(x, 0) = 0(x ∈ Rn).

Example 2.1. Solve (62) for n = 1. In this case d’Alembert’s formula (50) gives

u(x, t) =
∫ t

0
u(x, t; s)ds =

∫ t

0

1
2

∫ x+t−s

x−t+s
h(y)dyds =

1
2

∫ t

0

∫ x+t−s

x−t+s
f (y, s)dyds.

That is,

u(x, t) =
1
2

∫ t

0

∫ x+s

x−s
f (y, t − s)dyds(x ∈ R, t ⩾ 0).

Example 2.2. Solve (62) for n = 3. In this case Kirchhoff’s formula (57) implies

u(x, t; s) = −
∫

∂B(x,t−s)
(t − s) f (y, s)dS,
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so that

u(x, t) =
∫ t

0
(t − s)−

∫
∂B(x,t−s)

f (y, s)dSds =
1

4π

∫ t

0

∫
∂B(x,t−s)

f (y, s)
(t − s)

dSds

=
1

4π

∫ t

0

∫
∂B(x,r)

f (y, t − r)
r

dSdr.

Therefore

u(x, t) =
1

4π

∫
B(x,t)

f (y, t − |y − x|)
|y − x| dy(x ∈ R3, t ⩾ 0).

Now we almost finish Chapter 2. Before we move on to the last part, you could stop
and think about the different ways to solve different types of equations. The following
diagram takes the wave equation as an example to illustrate how it is solved.

v(x, t) :


vtt − ∆v = 0

v(x, t = 0) = g(x)

vt(x, t = 0) = h(x)

u(x, t) :


utt − ∆u = f (x, t)

u(x, t = 0) = g(x)

ut(x, t = 0) = h(x)

z(x, t; s) :


ztt − ∆z = 0

z(x, t = s; s) = 0

zt(x, t = s; s) = f (x, s)

w(x, t) :


wtt − ∆w = f (x, t)

w(x, t = 0) = 0

wt(x, t = 0) = 0

∀0⩽s⩽t

superposition

Duhamel’s princ.

superposition

Energy methods. Let U be a bounded, open set with a smooth boundary ∂U. Set UT =

U × (0, T], ΓT = ŪT − UT(T > 0). Consider the initial/boundary-value problem

(63)


utt − ∆u = f in UT

u = g on ΓT

ut = h on U × {t = 0}.

Theorem 2.32. (Uniqueness for wave equation). There exists at most one function u ∈ C2(ŪT)

solving (63).

Proof. If ũ is another such solution, then w := u − ũ solves
wtt − ∆w = 0 in UT

w = 0 on ΓT

wt = 0 on U × {t = 0}.

Define the "energy"

E(t) :=
1
2

∫
U

w2
t (x, t) + |Dw(x, t)|2dx(0 ⩽ t ⩽ T).
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We compute

E′(t) =
∫

U
wtwtt + Dw · Dwtdx =

∫
U

wtwtt − wt∆wdx +
∫

∂U
wt

∂w
∂ν

dS(x)

=
∫

U
wt(wtt − ∆w)dx = 0.

There is no boundary term since w = 0, and hence wt = 0, on ∂U × [0, T]. Thus for all
0 ⩽ t ⩽ T, E(t) = E(0) = 0, and so wt, Dw ≡ 0 within UT. Since w ≡ 0 on U × {t = 0},
we conclude w = u − ũ ≡ 0 in UT.

The domain of dependence is another illustration of energy methods. Suppose u ∈ C2

solves utt − ∆u = 0 in Rn × (0, ∞). Fix x0 ∈ Rn, t0 > 0 and define the backwards wave
cone with apex (x0, t0) : K(x0, t0) := {(x, t) : 0 ⩽ t ⩽ t0, |x − x0| ⩽ t0 − t}.

Theorem 2.33. (Finite propagation speed). If u ≡ ut ≡ 0 on B(x0, t0)× {t = 0}, then u ≡ 0
within the cone K(x0, t0).

Remark 2.18. We see that any "disturbance" originating outside B (x0, t0) has no effect on
the solution within K(x0, t0) and consequently has finite propagation speed. We already
know this from the representation formulas of Theorem 2.29 and Theorem 2.30, at least
assuming g = u and h = ut on Rn × {t = 0} are sufficiently smooth.

Proof. Define the local energy

e(t) :=
1
2

∫
B(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dx(0 ⩽ t ⩽ t0).

Then

e′(t) =
∫

B(x0,t0−t)
ututt + Du · Dutdx − 1

2

∫
∂B(x0,t0−t)

u2
t + |Du|2dS

=
∫

B(x0,t0−t)
ut(utt − ∆u)dx +

∫
∂B(x0,t0−t)

∂u
∂ν

utdS − 1
2

∫
∂B(x0,t0−t)

u2
t + |Du|2dS

=
∫

∂B(x0,t0−t)

∂u
∂ν

ut −
1
2

u2
t −

1
2
|Du|2dS.
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Now ∣∣∣∣∂u
∂ν

ut

∣∣∣∣ = |(Du · ν)ut| ⩽ |Du||ut| ⩽
1
2

u2
t +

1
2
|Du|2

by the Cauchy-Schwarz and Cauchy inequalities. Hence e′(t) ⩽ 0, and so e(t) ⩽ e(0) =

0(0 ⩽ t ⩽ t0). Thus ut, Du ≡ 0, and consequently u ≡ 0 within the cone K(x0, t0).
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2.5 Summary

The following table is a brief summary of the last three equations in this chapter.

Type M-V property Maximum princ. Smoothness

Laplace’s equation Elliptic Theorem 2.2 Theorem 2.4 Theorem 2.6

Heat equation Parabolic Theorem 2.20 Theorem 2.21 Theorem 2.25

Wave equation Hyperbolic – – Loss of regularity

Uniqueness of Cauchy prob. Some other properties

Laplace’s equation Theorem 2.5 Theorem 2.8, 2.10, 2.11

Heat equation Theorem 2.22, 2.24 Inf. prop. speed; no time reversal

Wave equation – Finite prop. speed; time reversal
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2.6 Problems

In the following exercises, all given functions are assumed smooth, unless otherwise
stated.

Problem 2.1. Write down an explicit formula for a function u solving the initial-value
problem {

ut + b · Du + cu = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Here c ∈ R and b ∈ Rn are constants.

Proof. Fix x ∈ Rn and t ∈ (0,+∞) and consider z(s) := u(x + bs, t + s) for s ∈ R. Then
we have

ż(s) = b · Du(x + bs, t + s) + ut(x + bs, t + s) = −cu(x + bs, t + s) = −cz(s).

Now the PDE reduces to an ODE, and solving the equation ż(s) = −cz(s) gives z(s) =

De−cs for some constant D. To solve D we let s = −t, and

z(−t) = u(x − tb, 0) = g(x − tb) = Dect.

Therefore D = g(x − tb)e−ct. Thus, u(x + bs, t + s) = g(x − tb)e−ct−cs, and letting s = 0
implies that u(x, t) = g(x − tb)e−ct.

Problem 2.2. Prove that Laplace’s equation ∆u = 0 is rotation invariant; that is, if O is an
orthogonal n × n matrix and we define

v(x) := u(Ox)(x ∈ Rn),

then ∆v = 0.

Proof. An abstract proof. We shall use some properties of gradient and divergence, and the
fact that the Laplacian of f is ∆ f = div · ∇ f . Note that

∆v(x) = (div · ∇)v(x) = (div · ∇)u(Ox)

= div(O(∇u)(Ox)) = OT(div(O∇u))(Ox)

= OTO(div · ∇)(u)(Ox)

= ∆u(Ox) = 0.

A brief proof. Write O = (aij) and by chain rule we have

vxi(x) =
n

∑
k=1

uxk(Ox)aki.

Thus

vxixi(x) =
n

∑
k=1

aki

(
n

∑
l=1

uxkxl(Ox)ali

)
=

n

∑
k=1

n

∑
l=1

akialiuxkxl(Ox).
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Since O is orthogonal, we have OTO = I, i.e.

n

∑
i=1

akiali =

 1, if k = l

0, if k 6= l

Thus the Laplacian of v is

∆v(x) =
n

∑
i=1

n

∑
k=1

n

∑
l=1

akialiuxkxl(Ox) =
n

∑
k=1

n

∑
l=1

(
uxkxl(Ox)

n

∑
i=1

akiali

)

=
n

∑
k=1

uxkxk(Ox) · 1 = ∆u(Ox) = 0,

as desired.
A detailed proof. Let y := Ox and O = (aij) as above. Thus,

v(x) = u(Ox) = u(y)

where yj =
n

∑
i=1

ajixi. This then gives that

vxi =
n

∑
j=1

uyj

∂yj

∂xi
=

n

∑
j=1

uyj aji.

Thus 
vx1

...

vxn

 =


a11 · · · an1
...

...

a1n . . . ann




∂u
∂y1
...

∂u
∂yn

 = OT


∂u
∂y1
...

∂u
∂yn


=⇒ Dxv = OTDyu.

Now,
∆v = Dxv · Dxv

= (OTDyu) · (OTDyu) = (OTDyu)TOTDyu

= (Dyu)T(OT)TOTDyu = (Dyu)TOOTDyu

= (Dyu)TDyu because O is orthogonal

= (Dyu) · (Dyu) = ∆u(y) = 0.

Hence we finish the proof.

Problem 2.3. Modify the proof of the mean-value formulas to show for n ⩾ 3 that

u(0) = −
∫

∂B(0,r)
gdS +

1
n(n − 2)α(n)

∫
B(0,r)

(
1

|x|n−2 − 1
rn−2

)
f dx

provided {
−∆u = f in B0(0, r)

u = g on ∂B(0, r)
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Proof. Define

ϕ(s) := −
∫

∂B(0,s)
u(y)dS(y) = −

∫
∂B(0,1)

u(sz)dS(z),

and we shall have

ϕ′(s) = −
∫

∂B(0,1)
Du(sz) · zdS(z) =

1
nα(n)sn−1

∫
∂B(0,s)

Du(y)
y
s

dS(y)

=
1

nα(n)sn−1

∫
∂B(0,s)

∂u
∂ν

dS(y) Green’s formula
==========

s
n

1
α(n)sn

∫
B(0,s)

∆u(y)dy

=
s
n
−
∫

B(0,s)
∆u(y)dy.

Let ε > 0 be given, and using integration by parts we get

ϕ(ε)− ϕ(r) = −
∫ r

ε
ϕ′(s)ds

=
∫ r

ε

(
s
n
−
∫

B(0,s)
f (y)dy

)
ds because ∆u(y) = − f (y)

=
∫ r

ε

(
1

nα(n)sn−1

∫
B(0,s)

f (y)dy
)

ds =
1

nα(n)

∫ r

ε

1
sn−1

∫
B(0,s)

f (y)dyds

Appendix B.3
=========

1
nα(n)

(
1

(2 − n)sn−2

∫
B(0,s)

f (y)dy
∣∣∣∣r
ε

−
∫ r

ε

1
(2 − n)sn−2

∫
∂B(0,s)

f (y)dS(y)ds
)

=
1

n(n − 2)α(n)

(∫ r

ε

1
sn−2

∫
∂B(0,s)

f (y)dS(y)ds − 1
rn−2

∫
B(0,r)

f (y)dy +
1

εn−2

∫
B(0,ε)

f (y)dy
)

=:
1

n(n − 2)α(n)

(
I − 1

rn−2

∫
B(0,r)

f (y)dy + J
)

.

Observe that

|J| ⩽ 1
εn−2 |B(0, ε)| · ‖ f (y)‖L∞(B(0,r)) ⩽ Cε2 for some constant C > 0

and ∫ r

0

1
sn−2 ds

∫
∂B(0,s)

f (y)dS(y) =
∫ r

0

∫
∂B(0,s)

f (y)
sn−2 dS(y)ds =

∫
B(0,r)

f (x)
|x|n−2 dx.

As ε → 0 we have
I + J →

∫
B(0,r)

1
|x|n−2 f (x)dx.

Thus

lim
ε→0

ϕ(ε)− ϕ(r) = − lim
ε→0

∫ r

ε
ϕ′(s)ds

=
1

n(n − 2)α(n)

(∫
B(0,r)

1
|x|n−2 f (x)dx − 1

rn−2

∫
B(0,r)

f (y)dy
)

=
1

n(n − 2)α(n)

∫
B(0,r)

(
1

|x|n−2 − 1
rn−2

)
f (x)dx.
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Moreover, note that

lim
ε→0

ϕ(ε) = lim
ε→0

1
|∂B(0, ε)|

∫
∂B(0,ε)

u(y)dS(y) = u(0),

which is given by the last formula of Theorem 2.1. Finally, we calculate

u(0) = ϕ(r) +
1

n(n − 2)α(n)

∫
B(0,r)

(
1

|x|n−2 − 1
rn−2

)
f (x)dx

= −
∫

∂B(x,r)
u(y)dS(y) +

1
n(n − 2)α(n)

∫
B(0,r)

(
1

|x|n−2 − 1
rn−2

)
f (x)dx

= −
∫

∂B(0,r)
gdS +

1
n(n − 2)α(n)

∫
B(0,r)

(
1

|x|n−2 − 1
rn−2

)
f dx,

so we are done.

Problem 2.4. Give a direct proof that if u ∈ C2(U) ∩ C(Ū) is harmonic within a bounded
open set U, then

max
Ū

u = max
∂U

u.

(Hint: Define uε := u + ε|x|2 for ε > 0, and show uε cannot attain its maximum over Ū at
an interior point.)

Proof. As per the hint, define uε := u + ε|x|2, and clearly u < uε for all ε > 0. Since
∂xi |x|2 = 2xi and u is harmonic, we have

∆uε = 0 + 2nε > 0 for x ∈ U.

As uε is continuous on the bounded and closed Ū, uε can achieve its maximum and min-
imum on Ū. Now for sake of contradiction, suppose that uε attains its maximum at an
interior point x0 of U. Analysis tells us that D2uε(x0) = Hess(uε(x0)) is negative semi-
definite and algebra gives that the trace of a negative semi-definite matrix is non-positive,
causing a clear contradiction since

0 ⩾ tr(D2uε(x0)) = ∆uε(x0) > 0.

Therefore, x0 cannot be local maximum of uε, so we conclude that

max
Ū

uε = max
∂U

uε.

We assume Ū ⊂ B(0, R) for some R > 0 since U is bounded. Then

max
Ū

u ⩽ max
Ū

uε = max
∂U

uε ⩽ max
∂U

u + max
∂U

ε|x|2 ⩽ max
∂U

u + εR2.

By letting ε → 0 we get max
Ū

u ⩽ max
∂U

u. Finally, since ∂U ⊂ Ū, we conclude that max
Ū

u =

max
∂U

u, proving the result.
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Problem 2.5. We say v ∈ C2(Ū) is subharmonic if

−∆v ⩽ 0 in U.

(a) Prove for subharmonic v that

v(x) ⩽ −
∫

B(x,r)
vdy for all B(x, r) ⊂ U.

(b) Prove that therefore max
Ū

v = max
∂U

v.

(c) Let ϕ : R → R be smooth and convex. Assume u is harmonic and v := ϕ(u). Prove v
is subharmonic.
(d) Prove v := |Du|2 is subharmonic, whenever u is harmonic.

Proof. (a) The proof starts out being essentially the same as the mean-value formulas for
harmonic functions. Set

ϕ(r) := −
∫

∂B(x,r)
v(y)dS(y)

and we obtain as in Theorem 2.2

ϕ′(r) =
r
n
−
∫

B(x,r)
∆v(y)dy ⩾ 0.

For 0 < ε < r, ∫ r

ε
ϕ′(s)ds = ϕ(r)− ϕ(ε) ⩾ 0.

Similarly, we have v(x) = lim
ε→0

ϕ(ε) ⩽ ϕ(r). Therefore,

−
∫

B(x,r)
v(y)dy =

1
α(n)rn

∫
B(x,r)

v(y)dy =
1

α(n)rn

∫ r

0

(∫
∂B(x,s)

v(z)dS(z)
)

ds

=
1

α(n)rn

∫ r

0
nα(n)sn−1ϕ(s)ds ⩾ 1

rn

∫ r

0
nsn−1v(x)ds = v(x).

(b) We only need to make a tiny change to the proof of the maximum principle. Suppose
U is connected and there exists a point x0 ∈ U with v(x0) = M := max

Ū
v. Then, for

0 < r < d(x0, ∂U), use the result of part (a):

M = v(x0) ⩽ −
∫

B(x0,r)
v(y)dy ⩽ M,

which then forces v(y) ≡ M for all y ∈ B(x0, r). Hence the set S = {x ∈ U : v(x) = M} is
both open (because every point of S is an interior point) and relatively closed (because v
is continuous) in U and thus equals U since U is connected. Hence v is constant in U and
also in Ū since v is continuous, and we conclude that max

Ū
v = max

∂U
v.

Now let {Ui : i ∈ I} be the connected components of U. Pick any x ∈ U and find j ∈ I
such that x ∈ Uj. We then obtain

v(x) ⩽ max
Ūj

v = max
∂Uj

v ⩽ max
∂U

v
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for all x ∈ U and the result follows.

(c) Convexity and smoothness of ϕ implies that ϕ′′ ⩾ 0. Now straight calculations show
that

vxi =
∂ϕ

∂u
uxi , vxixj =

∂2ϕ

∂u2 u2
xi
+

∂ϕ

∂u
uxixj

=⇒ ∆v =
n

∑
i=1

vxixi =
∂2ϕ

∂u2

n

∑
i=1

u2
xi
+

∂ϕ

∂u
∆u = ϕ′′|Du|2 ⩾ 0,

implying that v is subharmonic.

(d) Proof 1. First note that v = |Du|2 =
n

∑
i=1

u2
xi

, and so

vxj = 2
n

∑
i=1

uxi uxixj , vxjxj = 2
n

∑
i=1

(u2
xixj

+ uxi uxixjxj)

=⇒ 1
2

∆v =
n

∑
j=1

n

∑
i=1

(u2
xixj

+ uxi uxixjxj) =
n

∑
j=1

n

∑
i=1

u2
xixj

+
n

∑
i=1

uxi(∆u)xi ⩾ 0.

By definition v is subharmonic.

Proof 2. We know that if u is harmonic, uxi is harmonic. Moreover, u2
xi

is convex with
respect to uxi , so from (c) we know that (uxi)

2 is subharmonic. Obviously the sum of

subharmonic functions is still subharmonic, so v = |Du|2 =
n

∑
i=1

(uxi)
2 is subharmonic.

Problem 2.6. Let U be a bounded, open subset of Rn. Prove that there exists a constant C,
depending only on U, such that

max
Ū

|u| ⩽ C(max
∂U

|g|+ max
Ū

| f |)

whenever u is a smooth solution of{
−∆u = f in U

u = g on ∂U.

(Hint: −∆(u +
|x|2
2n

λ) ⩽ 0, for λ := max
Ū

| f |.)

Proof. Suppose that f is bounded on Ū (otherwise the inequality naturally holds). Now

following the hint, we consider the function v(x) := u(x) + |x|2
2n λ, where λ := max

Ū
| f |.

Then we calculate
∆v = ∆u + n

2
2n

λ = λ − f ⩾ 0,

implying that v is subharmonic. Since U is bounded, M := max
Ū

|x|2 exists and is finite.

The weak maximum principle as in the previous problem which holds for subharmonic
functions gives that

max
Ū

u ⩽ max
Ū

v = max
∂U

v ⩽ max
∂U

|g|+ M
2n

max
Ū

| f |.
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Replacing u by −u in v and we have

max
Ū

−u ⩽ max
Ū

v = max
∂U

v ⩽ max
∂U

|g|+ M
2n

max
Ū

| f |.

Combine the two equations above and set C := max{1, M}, and we have

max
Ū

|u| ⩽ C(max
∂U

|g|+ max
Ū

| f |).

Finally, since M only depends on U, we see that C does as well.

Problem 2.7. Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1 u(0) ⩽ u(x) ⩽ rn−2 r + |x|

(r − |x|)n−1 u(0)

whenever u is positive and harmonic in B0(0, r). This is an explicit form of Harnack’s
inequality.

Proof. First recall Poisson’s formula for the ball:

u(x) =
r2 − |x|2
nα(n)r

∫
∂B(0,r)

g(y)
|x − y|n dS(y) (x ∈ B0(0, r))

solves ∆u = 0 in B0(0, r) and u = g on ∂B(0, r). Second, the triangle equality |y| − |x| ⩽
|x − y| ⩽ |x|+ |y| gives

1
(r + |x|)n ⩽ 1

|x − y|n ⩽ 1
(r − |x|)n

for every y on ∂B(0, r) and x in B0(0, r). Now combining the two equations above we
obtain (taking the first half of the inequality as an example)

u(x) =
(r + |x|)(r − |x|)

nα(n)r

∫
∂B(0,r)

g(y)
|x − y|n dS(y)

⩾ (r + |x|)(r − |x|)
nα(n)r

∫
∂B(0,r)

g(y)
(r + |x|)n dS(y) =

(r − |x|)rn−2

nα(n)rn−1(r + |x|)n−1

∫
∂B(0,r)

g(y)dS(y)

= rn−2 r − |x|
(r + |x|)n−1−

∫
∂B(0,r)

g(y)dS(y) = rn−2 r − |x|
(r + |x|)n−1−

∫
∂B(0,r)

u(y)dS(y)

mean-value formula
============ rn−2 r − |x|

(r + |x|)n−1 u(0).

The proof of the second part is exactly the same.

Problem 2.8. Prove Theorem 2.15. (Hint: Since u ≡ 1 solves

{
∆u = 0 in B0(0, r)

u = g on ∂B(0, r)
for

g ≡ 1, the theory automatically implies∫
∂B(0,1)

K(x, y)dS(y) = 1
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for each x ∈ B0(0, 1).)

Proof. (i) First recall that

(64) u(x) =
∫

∂B(0,r)
K(x, y)g(y)dS(y).

By definition, G(x, y) is smooth and harmonic for x 6= y, and hence, given ε > 0, there
exists δ > 0 such that

|DαK(x, y)− DαK(x0, y)| < ε

for derivatives of any order whenever |x − x0| < δ (this statement is equivalent to the
continuity of DαK(x, y)). Since ∂B(0, r) is compact, we see that

Dαu(x) =
∫

∂B(0,r)
Dα

xK(x, y)g(y)dy.

This is done through the mean value theorem (see Theorem 9.42 of Principles of Mathemat-
ical Analysis by Rudin) or the dominated convergence theorem(see Theorem 2.27 of Real
Analysis by Folland). Noting that g is bounded since it is continuous on a compact set, we
obtain

|Dαu(x)− Dαu(x0)| ⩽
∫

∂B(0,r)
|DαK(x, y)− DαK(x0, y)‖g(y)|dy

< ε
∫

∂B(0,r)
|g(y)|dy

⩽ nα(n)ε‖g‖L∞(∂B(0,r)) → 0 as x → x0.

Hence u is smooth.
(ii) It is clear by the above that

∆u(x) =
∫

∂B(0,r)
∆xK(x, y)g(y)dy = 0.

(iii) In this section we are to show that lim
x→x0

u(x) = g(x0) for arbitrary x0 ∈ ∂B(0, r). We

will conduct a similar process as in the proof of Theorem 2.14. Fix x0 ∈ ∂B(0, r), ε > 0.
Choose sufficiently small δ > 0 so that |g(y) − g(x0)| < ε whenever |y − x0| < δ, y ∈
B(0, r). Moreover, since g is defined in a bounded compact set B(0, r), it is also bounded,
and thus we assume that |g(y)| < M. Now equation (64) in (i) gives that

|u(x)− g(x0)| =
∣∣∣∣∫

∂B(0,r)
g(y)K(x, y)dS(y)−

∫
∂B(0,r)

g(x0)K(x, y)dS(y)
∣∣∣∣

=

∣∣∣∣∫
∂B(0,r)

(g(y)− g(x0))K(x, y)dS(y)
∣∣∣∣

⩽
∫

∂B(0,r)
|g(y)− g(x0)|K(x, y)dS(y)

=
∫

∂B(0,r)∩B(x0,δ)
|g(y)− g(x0)|K(x, y)dS(y)+∫

∂B(0,r)−B(x0,δ)
|g(y)− g(x0)|K(x, y)dS(y)

=: I + J.
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Again by (64) we have

I <
∫

∂B(0,r)∩B(x0,δ)
εK(x, y)dS(y) < ε

∫
∂B(0,r)

K(x, y)dS(y) = ε.

Furthermore, if |x − x0| < δ/2 and |y − x0| > δ, then

|y − x0| < |y − x|+ |x − x0| < |y − x|+ δ

2
< |y − x|+ 1

2
|y − x0|,

which is |y − x| > |y − x0|/2. So

K(x, y) =
r2 − |x|2

nα(n)r|x − y|n <
2n(r2 − |x|2)

nα(n)r
1

|y − x0|n
<

2n(r2 − |x|2)
nα(n)rδn

for |x − x0| < δ/2 and y ∈ ∂B(0, r)− B(x0, δ). By the triangle inequality, we have |g(y)−
g(x0)| < 2M. Consequently

J =
∫

∂B(0,r)−B(x0,δ)
|g(y)− g(x0)|K(x, y)dS(y)

< 2M
∫

∂B(0,r)−B(x0,δ)

2n(r2 − |x|2)
nα(n)rδn dS(y) ⩽ 2M

2n(r2 − |x|2)
nα(n)rδn nα(n)rn

= (r2 − |x|2)2n+1Mrn−1

δn → 0 (|x| → r as x → x0 ∈ ∂B(0, r)).

Finally we conclude that |u(x)− g(x0)| → 0 as x → x0, as desired.

Problem 2.9. Let u be the solution of{
∆u = 0 in Rn

+

u = g on ∂Rn
+

given by Poisson’s formula for the half-space. Assume g is bounded and g(x) = |x| for
x ∈ ∂Rn

+, |x| ⩽ 1. Show Du is not bounded near x = 0. (Hint: Estimate u(λen)−u(0)
λ .)

Proof. According to Poisson’s formula (26) for half-plane, we have

u(x) =
2xn

nα(n)

∫
∂Rn

+

g(y)
|x − y|n dy.

Consider

u(λen)− u(0)
λ

=
2

nα(n)

∫
∂Rn

+

g(y)
|λen − y|n dy

=
2

nα(n)

∫
∂Rn

+∩{|y|⩽1}

|y|
(λ2 + |y|2)n/2 dy +

2
nα(n)

∫
∂Rn

+∩{|y|>1}

g(y)
(λ2 + |y|2)n/2 dy

⩾ 2
nα(n)

∫
B(0,1)

|y|
(λ2 + |y|2)n/2 dy.
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According to the Monotone convergence theorem, we have

lim
λ→0

∫
B(0,1)

|y|
(λ2 + |y|2)n/2 dy =

∫
B(0,1)

|y|
|y|n dy = ∞

This implies that uxn(λen) → ∞ as λ → 0. Hence Du is not bounded near x = 0.

Problem 2.10. (Reflection principle)
(a) Let U+ denote the open half-ball {x ∈ Rn : |x| < 1, xn > 0}. Assume u ∈ C2(U+) is
harmonic in U+, with u = 0 on ∂U+ ∩ {xn = 0}. Set

v(x) :=

{
u(x) if xn ⩾ 0

−u(x1, · · · , xn−1,−xn) if xn < 0

for x ∈ U = B0(0, 1). Prove v ∈ C2(U) and thus v is harmonic within U.
(b) Now assume only that u ∈ C2(U+)∩C(U+). Show that v is harmonic within U. (Hint:
Use Poisson’s formula for the ball.)

Proof. (a) We can directly calculate ∆v = 0 when |xn| > 0. Now it suffices to prove
that D2v exists when |xn| = 0 and ∆v = 0 on {xn = 0}. First we assert that for any
x0 ∈ {xn = 0}, n > k, we have

lim
xn>0,x→x0

vxnxk(x) = lim
xn<0,x→x0

vxnxk(x)

since u ∈ C2(U+).
Using the continuity of D2u again, we obtain

n−1

∑
i=1

∂2

∂x2
i

u(x0) +
∂2

∂ν2 u(x0) = lim
xn>0,x→x0

∆u(x) = 0.

Additionally we know that uxixi(x0) = 0 for 1 ⩽ i ⩽ n − 1, and thus
∂2

∂ν2 u(x0) = 0 where

ν = −en. Consequently
∂2

∂ν2 v(x0) = 0, where ν = en or −en, which is equivalent to

vxnxn(x0) = 0. Then we have ∆v(x0) = 0, implying that v is harmonic and v ∈ C2(U).
(b) We employ Poisson’s formula for the ball to find that

v(x) =
∫

∂B(0,1)
K(x, y)v(y)dS(y),

where K(x, y) denotes Poisson’s kernel. We have shown that K is harmonic and that
K(x, y) ∈ C2(B(0, 1)), and so we find that

∂v(x)
∂xi

=
∫

∂B(0,1)

∂K(x, y)
∂xi

v(y)dS(y).

Since v is continuous on ∂B(0, 1), we see that
∂K(x, y)

∂xi
v(y) is continuous and hence so is
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the integral, and so v(x) ∈ C1(Ū). Similarly, the second derivative is easy to calculate:

∂2v(x)
∂x2

i
=
∫

∂B(0,1)

∂2K(x, y)
∂x2

i
v(y)dS(y)

So that v ∈ C2(Ū). Finally, note that K(x, y) is harmonic:

∆v(x) =
∫

∂B(0,1)
∆xK(x, y)v(y)dS(y) = 0.

Hence v is harmonic, and we are done.

Problem 2.11. (Kelvin transform for Laplace’s equation) The Kelvin transform Ku = ū of a
function u : Rn → R is

ū(x) := u(x̄)|x̄|n−2 = u(x/|x|2)|x|2−n(x 6= 0),

where x̄ = x/|x|2. Show that if u is harmonic, then so is ū.
(Hint: First show that Dx x̄(Dx x̄)T = |x̄|−4 I. The mapping x → x̄ is conformal, meaning
angle preserving.)

Proof. First define ψ : Rn → Rn by ψ(x) = x̄ and compute

∂

∂xi
ψj(x) =

δij

|x|2 −
2xixj

|x|4 ,

where δij is the Kronecker symbol. Hence

Dx(x̄) =
(

∂ψ

∂x1
(x),

∂ψ

∂x2
(x), · · · ,

∂ψ

∂xn
(x)
)
= |x|−2(I − 2xxT/|x|2)

=



(|x|2 − 2x2
1)|x|−4 −2x1x2|x|−4 · · · −2x1xn|x|−4

−2x2x1|x|−4 (|x|2 − 2x2
2)|x|−4 · · · −2x2xn|x|−4

−2x3x1|x|−4 −2x3x2|x|−4 · · · −2x3xn|x|−4

...
... . . . ...

−2xnx1|x|−4 −2xnx2|x|−4 · · · (|x|2 − 2x2
n)|x|−4


and this implies that Dx x̄(Dx x̄)T = |x|−4(I − 4|x|−2xxT + 4|x|−4xxTxxT) = |x̄|−4 I.
We now calculate ∆ψ; since

ψ
j
xixi = −2|x|−4(xj + 2δijxi) + 8|x|−6x2

i xj,

we have

∆ψj =
n

∑
i=1

ψ
j
xixi =

n

∑
i=1

(−2|x|−4(xj + 2δijxi) + 8|x|−6x2
i xj)

= −2|x|−4
n

∑
i=1

(xj + 2δijxi) + 8|x|−6xj

n

∑
i=1

x2
i

= −2|x|−4(n + 2)xj + 8|x|−4xj = 2(2 − n)
xj

|x|4 ,
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implying that
∆ψ = 2(2 − n)

x
|x|4 .

Therefore by applying the product rule ∆(uv) = u∆v + 2∇u · ∇v + v∆u and calculating
the composition rule

∆u(ψ(x)) =
n

∑
i=1

∂2

∂x2
i

u(ψ(x)) =
n

∑
i=1

∂

∂xi

(
n

∑
j=1

∂

∂xj
u(ψ(x)) · ∂

∂xi
ψj

)

=
n

∑
i=1

(
n

∑
j=1

n

∑
k=1

∂2

∂xk∂xj
u(ψ(x))

∂

∂xk
u(ψ(x)) · ∂

∂xk
ψk · ∂

∂xi
ψj +

n

∑
j=1

∂

∂xj
u(ψ(x)) · ∂2

∂x2
i

ψj

)

=
n

∑
i=1

(Dψi)TD2u(ψ(x))Dψi + Du · ∆ψ.

we obtain

∆ū = ∆(u(x/|x|2)|x|2−n) = u(x̄)∆(|x|2−n) + 2Dū · D(|x|2−n) + |x|2−n∆u(x̄)

= u(x̄)∆(|x|2−n) + 2DuDx̄(D|x|2−n)T + |x|2−n(Du · ∆x̄ + tr((Dx̄)TD2uDx̄)).

Note that

∆(|x|2−n) =
n

∑
i=1

∂2

∂xi∂xi
|x|2−n =

n

∑
i=1

∂

∂xi
(2 − n)|x|−nxi

=
n

∑
i=1

(2 − n)(−n|x|−2−nx2
i + |x|−n) = (n − 2)

(
n

∑
i=1

nx2
i

|x|n+2 − n · 1
|x|n

)
= 0(x 6= 0)

and
tr((Dx̄)TD2uDx̄) = tr(Dx̄(Dx̄)TD2u) = |x|−4∆u = 0.

Meanwhile, we have

2DuDx̄(D|x|2−n)T = 2Du
(
|x|−2

(
I − 2

xxT

|x|2

))
(2 − n)|x|−nx

=2(n − 2)|x|−2−nDu · x = −|x|2−nDu ·
(

2(2 − n)
x

|x|4

)
= −|x|2−nDu · ∆x̄.

Therefore ∆ū = 0 and so the Kelvin transform preserves harmonic functions.

Problem 2.12. Suppose u is smooth and solves ut − ∆u = 0 in Rn × (0, ∞).

(a) Show uλ(x, t) := u(λx, λ2t) also solves the heat equation for each λ ∈ R.

(b) Use (a) to show v(x, t) := x · Du(x, t) + 2tut(x, t) solves the heat equation as well.

Proof. (a) By direct calculations we have

∂tuλ(x, t) = λ2ut(λx, λ2t),

∂xi uλ(x, t) = λuxi(λx, λ2t), ∂2
xi

uλ(λx, λ2t) = λ2uxixi(λx, λ2t),

=⇒ ∂tuλ − ∆uλ = λ2u(λx, λ2t)− λ2∆u(λx, λ2t) = 0.
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(b) We derive uλ with respect to λ to obtain

∂λuλ(x, t) = xDxu(λx, λ2t) + 2λtut(λx, λ2t).

Since u is smooth, so is uλ, and thus the derivatives commute. More precisely, by (a) we
have

(∂t − ∆x)(∂λuλ(x, t)) = ∂λ(∂tuλ(x, t)− ∆xuλ(x, t)) = 0.

Hence ∂λuλ(x, t) solves the heat equation for λ ∈ R. Set λ = 1 and then xDxu(x, t) +
2tut(x, t) solves the heat equation.

Problem 2.13. Assume n = 1 and u(x, t) = v
(

x√
t

)
.

(a) Show
ut = uxx

if and only if

(∗) v′′ +
z
2

v′ = 0.

Show that the general solution of (∗) is

v(z) = c
∫ z

0
e−s2/4ds + d.

(b) Differentiate u(x, t) = v
(

x√
t

)
with respect to x and select the constant c properly, to

obtain the fundamental solution Φ for n = 1. Explain why this procedure produces the
fundamental solution. (Hint: What is the initial condition for u?)

Proof. (a) Define z : R × R → R by z(x, t) = x/
√

t. Then

ut(x, t) = ∂tv
(

x√
t

)
= −1

2
x

t3/2 v′(z(x, t))

ux(x, t) = ∂xv
(

x√
t

)
=

1√
t
v′(z(x, t))

uxx(x, t) = ∂x
1√

t
v′
(

x√
t

)
=

1
t

v′′(z(x, t)).

So
ut = uxx

⇐⇒ − 1
2

x
t3/2 v′(z(x, t)) =

1
t

v′′(z(x, t))

⇐⇒ − 1
2

z(x, t)v′(z(x, t)) = v′′(z(x, t))

⇐⇒ v′′(z) +
z
2

v′(z) = 0.

The last equation is exactly what we want.
By (∗) we know that v′′/v′ = −z/2, and consequently,

ln v′ =
∫ v′′

v′
+ C1 = −z2

4
+ C1 =⇒ v′(z) = ce−z2/4,
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where c = eC1 is constant. Integrate the equation above to get

v(z) =
∫ z

0
v′(s)ds + d = c

∫ z

0
e−s2/4ds + d,

as desired.
(b) It is obvious that

v
(

x√
t

)
= c

∫ x/
√

t

0
e−s2/4ds + d

and
ux(x, t) = v′(

x√
t
) =

c√
t
e−x2/4t.

Now we want to integrate over R and set the integral to 1. Thus we get

1 =
c√
t

∫ ∞

−∞
e−s2/4tds.

But we already know that
∫ ∞

−∞
e−s2

ds =
√

π, and so we let y = s/
√

4t. Hence dy =

(4t)−1/2ds, and by substituting we obtain

1 =
c√
t

∫ ∞

−∞

√
4te−y2

dy = 2c
√

π,

hence c = 1/(2
√

π). Therefore Φ(x, t) =
1√
4πt

e−x2/4t.

Now u(x, t) =
1

2
√

π

∫ x/
√

t

0
e−s2/4ds and we shall explain the reason why Φ defined above

is the fundamental solution of the heat equation. We can analyze the behavior of u(x, t)
near t = 0. The sign of x matters:

x > 0 : lim
t→0+

u(x, t) =
1

2
√

π

∫ ∞

0
e−

s2
4 ds =

1√
π

∫ ∞

0
e−s2

ds =
1
2
=: u+(x, 0),

x < 0 : lim
t→0+

u(x, t) =
1

2
√

π

∫ −∞

0
e−

s2
4 ds =

−1√
π

∫ ∞

0
e−s2

ds = −1
2
=: u−(x, 0).

This shows u(x, 0) is a step function with one jump at x = 0 of height 1, and undefined at
x = 0. Now note that ux(x, 0) exists and equals 0 for x 6= 0. Now for any φ ∈ C∞

c (R) we
write∫ ∞

−∞
ux(x, 0)φ(x)dx = −

∫ ∞

−∞
u(x, 0)φ′(x)dx = −

∫ 0

−∞
u−(x, 0)φ′(x)dx −

∫ ∞

0
u+(x, 0)φ′(x)dx

=
1
2

∫ 0

−∞
φ′(x)dx − 1

2

∫ ∞

0
φ′(x)dx = φ(0) =

∫ ∞

−∞
δ0(x)φ(x)dx,

implying that ux(x, 0) = δ0(x). This is the initial condition satisfied by the fundamental
solution, hence it is no surprise that we have reached the fundamental solution.
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Problem 2.14. Write down an explicit formula for a solution of ut − ∆u + cu = f in Rn × (0, ∞)

u = g on Rn × {t = 0},

where c ∈ R.

Proof. Set v(x, t) = u(x, t)ect. Then

vt − ∆v = utect + ucect − ect∆u = ect(ut − ∆u + cu) = ect f

and it is clear that v = g on Rn × {t = 0}. Using Theorem 2.19, the function

v(x, t) =
∫

Rn
Φ(x − y, t)g(y)dy +

∫ t

0

∫
Rn

Φ(x − y, t − s) f (y, s)ecsdyds

solves the equation. Thus u(x, t) = v(x, t)e−ct solves the system of equations.

Problem 2.15. Given g : [0, ∞) → R, with g(0) = 0, derive the formula

u(x, t) =
x√
4π

∫ t

0

1
(t − s)3/2 e

−x2
4(t−s) g(s)ds

for a solution of the initial/boundary-value problem
ut − uxx = 0 in R+ × (0, ∞)

u = 0 on R+ × {t = 0},

u = g on {x = 0} × [0, ∞).

(Hint: Let v(x, t) := u(x, t)− g(t) and extend v to {x < 0} by odd reflection.)

Proof. We follow the hint and extend our function v(x, t) := u(x, t)− g(t) to {x < 0} by
odd reflection, i.e. define v(x, t) = −u(−x, t) + g(t) when x ⩽ 0. Then the system of
equations is transformed into

vt(x, t)− vxx(x, t) = −g′(t) in R+ × (0, ∞)

vt(x, t)− vxx(x, t) = g′(t) in R− × (0, ∞)

v = 0 on R × {t = 0}
v = 0 in {x = 0} × [0, ∞).

By (38), we get

v(x, t) =
∫ t

0

1√
4π(t − s)

{∫ 0

−∞
e−

(y−x)2

4(t−s) g′(s)dyds −
∫ ∞

0
e−

(y−x)2

4(t−s) g′(s)dyds
}

.

Note that the integral of the fundamental solution is 1:

∫
R

Φ(x − y, t − s)dy =
∫ ∞

−∞

1
(4π(t − s))1/2 e−

(y−x)2

4(t−s) dy = 1,
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so when x > 0 we let y − x = −z and obtain

u(x, t) = v(x, t) + g(t)

= v(x, t) +
∫ t

0
g′(s)ds

∫ ∞

−∞

1√
4π(t − s)

e−
(y−x)2

4(t−s) dy

= 2
∫ t

0

1√
4π

(t − s)−
1
2

∫ 0

−∞
e−

(y−x)2

4(t−s) dyg′(s)ds

=
∫ t

0

1√
π
(t − s)−

1
2

∫ ∞

x
e−

z2
4(t−s) dzdg(s)

Integrating by parts, we get

u(x, t) =
1√
π
(t − s)−1/2

∫ ∞

x
e−

z2
4(t−s) dz · g(s)

∣∣∣∣s=t

s=0
−
∫ t

0
g(s)

1
2
√

π
(t − s)−3/2ds

∫ ∞

x
e−

z2
4(t−s) dz

−
∫ t

0
g(s)

1√
π
(t − s)−1/2ds

∫ ∞

x
e−

z2
4(t−s)

−z2

4(t − s)2 dz

=: I1 − I2 +
∫ t

0
g(s)

1√
π
(t − s)−1/2ds

∫ ∞

x

−z
2(t − s)

de−
z2

4(t−s)

= I1 − I2 +
∫ t

0
g(s)

1√
4π

(t − s)−3/2ds(−z) e−
z2

4(t−s)

∣∣∣∣z=∞

z=x
+ I2

= I1 +
x√
4π

∫ t

0

1
(t − s)3/2 e−

x2
4(t−s) g(s)ds.

Now, we focus on I1 and define w2 := z2/4ε, and so

I1 = lim
ε→0+

1√
π

ε−1/2
∫ ∞

x
e−z2/4εdz · g(t − ε) = g(t) lim

ε→0+

1√
π

∫ ∞

x2/4ε
2e−w2

dw = 0.

Thus, we have shown that

u(x, t) =
x√
4π

∫ t

0

1
(t − s)3/2 e−

x2
4(t−s) g(s)ds, x > 0.

Next, we need to prove that
lim

x→0+
u(x, t) = g(t).

Now for any fixed δ > 0,

lim
x→0+

u(x, t) = lim
x→0+

x√
4π

∫ t

t−δ

1
(t − s)3/2 e

−x2
4(t−s) g(s)ds + lim

x→0+

x√
4π

∫ t−δ

0

1
(t − s)3/2 e−

x2
4(t−s) g(s)ds

=g(t) lim
x→0+

x√
4π

∫ t

t−δ

1
(t − s)3/2 e−

x2
4(t−s) ds

=g(t) lim
x→0+

x√
4π

∫ δ

0

1
s3/2 e−x2/4sds.
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For fixed x we substitute x2/w2 for s, and get

lim
x→0+

u(x, t) = g(t) lim
x→0+

x
2
√

π

∫ x2/δ

∞

w3

x3 e−w2/4−2x2

w3 dw

= g(t) lim
x→0+

1√
π

∫ ∞

x2/δ
e−w2/4dw

= g(t)
1√
π

∫ ∞

0
e−w2/4dw = g(t).

Hence we reach our goal.

Problem 2.16. Give a direct proof that if U is bounded and u ∈ C2
1(UT) ∩ C(ŪT) solves

the heat equation, then
max

ŪT

u = max
ΓT

u.

(Hint: Define uε := u − εt for ε > 0, and show uε cannot attain its maximum over ŪT at a
point in UT.)

Proof. Defining uε := u − εt(ε > 0), we see that ∂tuε − ∆uε = −ε < 0. For sake of
contradiction, assume that uε has maximum at (x0, t0) ∈ UT = U × (0, T]. For the same
reasons in the proof of Problem 2.4, we assert that tr(D2

xuε(x0, t0)) = ∆xuε(x0, t0) ⩽ 0, and
∂tuε(x0, t0) = 0, thus

∂tuε(x0, t0)− ∆xuε(x0, t0) ⩾ 0,

a contradiction. Hence, uε cannot attain is maximum on the interior, i. e. max
ŪT

uε = max
ΓT

uε.

Now we conclude that

max
ŪT

u = max
ŪT

(uε + εt) ⩽ max
ŪT

uε + max
ŪT

εt

⩽ max
ΓT

uε + εT ⩽ max
ΓT

u + εT.

Let ε → 0, and then max
ŪT

u ⩽ max
ΓT

u. Hence the assertion follows.

Problem 2.17. We say v ∈ C2
1(UT) is a subsolution of the heat equation if

vt − ∆v ⩽ 0 in UT.

(a) Prove for a subsolution v that

v(x, t) ⩽ 1
4rn

∫∫
E(x,t;r)

v(y, s)
|x − y|2
(t − s)2 dyds

for all E(x, t; r) ⊂ UT.
(b) Prove that therefore maxŪT

v = maxΓT v.
(c) Let ϕ : R → R be smooth and convex. Assume u solves the heat equation and v :=
ϕ(u). Prove v is a subsolution.
(d) Prove v := |Du|2 + u2

t is a subsolution, whenever u solves the heat equation.

Proof. (a) We modify the proof of Theorem 2.20, writing v instead of u. Recall that E(r) :=
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E(0, 0; r) and

ϕ(r) :=
1
rn

∫∫
E(r)

u(y, s)
|y|2
s2 dyds =

∫∫
E(1)

u(ry, r2s)
|y|2
s2 dyds.

Furthermore, we know that

ϕ′(r) = A + B =
1

rn+1

∫∫
E(r)

−4nvsψ − 2n
s

n

∑
i=1

vyi yidyds

with ψ(s) defined by

ψ := −n
2

ln(−4πs) +
|y|2
4s

+ n ln r = ln(Φ(y,−s)rn).

By the definition of the heat ball, we have Φ(y,−s)rn ⩾ 1 and hence ψ ⩾ 0 in E(r). Thus
4nψ(vs − ∆v) ⩽ 0,−4nψvs ⩾ −4n∆v. Then we have the inequality

ϕ′(r) =
1

rn+1

∫∫
E(r)

−4nvsψ − 2n
s

n

∑
i=1

vyi yidyds

⩾ 1
rn+1

∫∫
E(r)

−4n∆vψ − 2n
s

n

∑
i=1

vyi yidyds

= 0

according to the proof of Theorem 2.20. So we have

ϕ(r) ⩾ ϕ(ε)

for all r > ε > 0. But we know that

lim
ε→0

ϕ(ε) = v(0, 0) lim
ε→0

1
εn

∫∫
E(ε)

|y|2
s2 dyds = 4v(0, 0),

and so we have
1
rn

∫∫
E(r)

v(y, s)
|y|2
s2 dyds = ϕ(r) ⩾ 4v(0, 0).

The original proof has assumed upon translating the space and time coordinates that x = 0
and t = 0, and so do I. Therefore

1
4rn

∫∫
E(x,t;r)

v(y, s)
|x − y|2
(t − s)2 dyds ⩾ v(x, t),

as desired.
(b) We modify the proof of the Theorem 2.21. Again we put v instead of u. Assume that
there exist a point (x0, t0) ∈ UT with v(x0, t0) = M := max

UT

u. Then for sufficiently small
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r > 0, E(x0, t0; r) ⊂ UT, thus

M = v(x0, t0) ⩽
1

4rn

∫∫
E(x0,t0;r)

v(y, s)
|x − y|2
(t − s)2 dyds

⩽ M
1

4rn

∫∫
E(x0,t0;r)

|x − y|2
(t − s)2 dyds = M.

so we must have v(y, s) = M for (y, s) ∈ E(x0, t0; r). The rest of the proof is the same.
(c) Follow the equations

vt = ϕ′(u)ut,

vxi = ϕ′(u)uxi ,

vxixi = ϕ′′(u)u2
xi
+ ϕ′(u)uxixi .

Thus we have

vt − ∆v = ϕ′(u)ut − ϕ′(u)∆u − ϕ′′(u)
n

∑
i=1

u2
xi
⩽ 0.

(d) Since v = |Du|2 + u2
t = u2

t +
n

∑
j=1

u2
xj

, so we have

vt = 2ututt + 2
n

∑
j=1

uxj uxjt,

vxi = 2ututxi + 2
n

∑
j=1

uxj uxjxi ,

vxixi = 2

(
ututxixi + u2

txi
+

n

∑
j=1

uxj uxjxixi + u2
xjxi

)
.

Hence

∆v = 2
n

∑
i=1

(
ututxixi + u2

txi
+

n

∑
j=1

uxj uxjxixi + u2
xjxi

)

= 2

(
n

∑
i=1

u2
txi

+
n

∑
i,j=1

u2
xixj

+ ut∆ut +
n

∑
j=1

uxj ∆uxj

)
.

Since u solves heat equation, so does ut and uxi for i = 1, 2, · · · , n. This is true since
differentiation commutes. Consequently,

∆v = 2

(
n

∑
i=1

u2
txi

+
n

∑
i,j=1

u2
xixj

+ ut∆ut +
n

∑
j=1

uxj ∆uxj

)

= 2

(
n

∑
i=1

u2
txi

+
n

∑
i,j=1

u2
xixj

)
+ 2ututt + 2

n

∑
j=1

uxj uxjt

⩾ 2ututt + 2
n

∑
j=1

uxj uxjt = vt,

and we are done.
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Problem 2.18. (Stokes’ rule) Assume u solves the initial-value problem{
utt − ∆u = 0 in Rn × (0, ∞)

u = 0, ut = h on Rn × {t = 0}.

Show that v := ut solves {
vtt − ∆v = 0 in Rn × (0, ∞)

v = h, vt = 0 on Rn × {t = 0}.

This is Stokes’ rule.

Proof. Simply note that ∂2
t (ut) − ∆(ut) = ∂t(utt − ∆u) = 0. It is clear that ut = h and

vt = ht = 0 on Rn × {t = 0}.

Problem 2.19. (a) Show the general solution of the PDE uxy = 0 is

u(x, y) = F(x) + G(y)

for arbitrary functions F, G.
(b) Using the change of variables ξ = x + t, η = x − t, show utt − uxx = 0 if and only if
uξη = 0.
(c) Use (a) and (b) to rederive d’Alembert’s formula.
(d) Under what conditions on the initial data g, h is the solution u a right-moving wave?
A left-moving wave?

Proof. (a) It is obvious by integrating with respect to x and y.
(b) Since u(x, t) = u

(
ξ+η

2 , ξ−η
2

)
, differentiate and we get uξη = 1

4(∆u − utt). Hence uξη =

0 if and only if u solves the wave equation.
(c) The general solution is given by u = F(ξ) + G(η) = F(x + t) + G(x − t). From the
initial condition we have F(x) + G(x) = g(x) and F′(x)− G′(x) = h(x). Integrating the

second the equation F(x)− G(x) =
∫ x

0
h(y)dy, then F(x) =

1
2

(
g(x) +

∫ x

0
h(y)dy

)
and

G(x) =
1
2

(
g(x)−

∫ x

0
h(y)dy

)
. We then arrive at d’Alembert’s formula

u(x, t) =
1
2
(g(x + t) + g(x − t)) +

1
2

∫ x+t

x−t
h(y)dy.

(d) If F(z) = g(z) +
∫ z

0
h(y)dy = 0, the solution is a right-moving wave; if G(x) = g(z)−∫ z

0
h(y)dy = 0, the wave is moving towards the left.

Problem 2.20. Assume that for some attenuation function α = α(r) and delay function
β = β(r) ⩾ 0, there exist for all profiles ϕ solutions of the wave equation in (Rn −{0})×R

having the form
u(x, t) = α(r)ϕ(t − β(r))

Here r = |x| and we assume β(0) = 0. Show that this is possible only if n = 1 or 3, and
compute the form of the functions α, β.
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Remark 2.19. The proof below has not been checked by the author.

Proof. Setting v(r, t) := u(x, t) we obtain the n-dimensional radially symmetric wave
equation

(65) vrr +
n − 1

r
vr = vtt.

If distortionless radially symmetric wave propagation is possible, then given any reason-
able ϕ the function v(r, t) = α(r)ϕ(t− β(r)) is a solution of (65). Computing partial deriva-
tives

vtt = αϕ′′, vr = α′ϕ − αϕ′β′,

vrr = α′′ϕ − 2α′ϕ′β′ − αϕ′′(β′)2 − αϕ′β′′.

The only possible way the above equation holds for all reasonable ϕ is that the coefficients
of ϕ, ϕ′, ϕ′′ to equal to zero. Equating the coefficients gives β′ = 1, thus β′′ = 0; plugging
this into the equation gives

(66) 2α′ +
n − 1

r
α = 0, α′′ +

n − 1
r

α′ = 0.

The solutions to (66) are of the form Krp where K and p are constants. This then gives

(67) 2p + n − 1 = 0, p(p − 1) + p(n − 1) = 0.

(67) have solutions only for p = 1 or 3. Moreover, when p = 1, we have α(r) = 1.

Problem 2.21. (a) Assume E = (E1, E2, E3) and B = (B1, B2, B3) solve Maxwell’s equations Et = curl B, Bt = − curl E

div B = div E = 0.

Show
Ett − ∆E = 0, Btt − ∆B = 0.

(b) Assume that u = (u1, u2, u3) solves the evolution equations of linear elasticity

utt − µ∆u − (λ + µ)D(div u) = 0 in R3 × (0, ∞).

Show w := div u and w := curl u each solve wave equations, but with differing speeds of
propagation.

Proof. (a) We calculate by definition

Ett = ∂2
t E = ∂t(∇× B)

= ∇× (∂tB) = ∇× (− curl E)

= −∇× (∇× E)

= ∆E −∇(∇ · E)

= ∆E −∇(div E) = ∆E.

The procedure of the second equation is all the same.
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(b) Taking divergence of the equation we have

div utt − µ(∆ div u)− (λ + µ)div(D(div u)) = 0

that is wtt − (2µ + λ)∆w = 0. Taking curl of the equation we have

curl utt − µ∆(curl u)− (λ + µ) curl(D(div u)) = 0,

that is vtt − µ∆v = 0.

Problem 2.22. Let u denote the density of particles moving to the right with speed one
along the real line and let v denote the density of particles moving to the left with speed
one. If at rate d > 0 right-moving particles randomly become left-moving, and vice versa,
we have the system of PDE  ut + ux = d(v − u)

vt − vx = d(u − v)

Show that both w := u and w := v solve the telegraph equation

wtt + 2dwt − wxx = 0.

Remark 2.20. The proof below has not been checked by the author.

Proof. Differentiating both sides of the equations with respect to t and to x, we have

utt + uxt = d(vt − ut), vtt − vxt = d(ut − vt),

utx + uxx = d(vx − ux), vtx − vxx = d(ux − vx).

Subtracting and using the equations we have

utt − uxx = d(vt − vx + ux − ut) = d(u − v + v − u)− 2dut = −2dut.

Adding and using the equations we have

vtt − vxx = d(−vt − vx + ux + ut) = d(u − v + v − u)− 2dvt = −2dvt.

Hence both u and v solve the telegraph equation.

Problem 2.23. Let S denote the square lying in R × (0, ∞) with corners at the points
(0, 1), (1, 2), (0, 3), (−1, 2). Define

f (x, t) :=


−1 for (x, t) ∈ S ∩ {t > x + 2}

1 for (x, t) ∈ S ∩ {t < x + 2}
0 otherwise.

Assume u solves  utt − uxx = f in R × (0, ∞)

u = 0, ut = 0 on R × {t = 0}.

Describe the shape of u for times t > 3.
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Remark 2.21. The proof below has not been checked by the author.

Proof. By Duhamel’s principle, the solution to the nonhomogeneous wave equation is
given by

(68) u(x, t) =
1
2

∫ t

0

∫ x+s

x−s
f (y, t − s)dyds.

See the figure attached below - at time T1, u(x, T1) = 0 at any point which is not be-
tween P1 and P2. For example, the double integral (68) vanishes when taken over trian-
gles 4Q1A1B1 and 4Q2A2B2 because of the nature of this particular function f (x, t). The
force affects u(x, t) only in the shaded comet shaped region; at times T1 and T2 the shape
of the string is illustrated by the broken lines superimposed on the figure. The pointed
pulse travels with unit speed in the positive x-direction. The solution is called a "one way
wave".

Problem 2.24. (Equipartition of energy) Let u solve the initial-value problem for the wave
equation in one dimension:{

utt − uxx = 0 in R × (0, ∞)

u = g, ut = h on R × {t = 0}.

Suppose g, h have compact support. The kinetic energy is k(t) :=
1
2

∫ ∞

−∞
u2

t (x, t)dx and the

potential energy is p(t) :=
1
2

∫ ∞

−∞
u2

x(x, t)dx. Prove

(a) k(t) + p(t) is constant in t,
(b) k(t) = p(t) for all large enough times t.

Proof. (a) Take derivative of k(t) and p(t), we have

kt(t) =
∂

∂t
1
2

∫ ∞

−∞
u2

t (x, t)dx =
∫ ∞

−∞
ut · uttdx,

pt(t) =
∂

∂t
1
2

∫ ∞

−∞
u2

x(x, t)dx =
∫ ∞

−∞
ux · uxtdx = −

∫ ∞

−∞
uxx · utdx.
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Hence kt(t) + pt(t) =
∫ ∞

−∞
ut · (utt − uxx)dx = 0 which implies that k(t) + p(t) is constant

over t.
(b) D’Alembert’s formula gives us the explicit solution

1
2
[g(x + t) + g(x − t)] +

1
2

∫ x+t

x−t
h(y)dy

and thus
ut =

1
2
[g′(x + t)− g′(x − t)] +

1
2
[h(x + t) + h(x − t)],

ux =
1
2
[g′(x + t) + g′(x − t)] +

1
2
[h(x + t)− h(x − t)].

Since both g and h are compactly supported, for large enough t we have u2
t = u2

x. There-
fore k(t)− p(t) = 0, that is k(t) = p(t) for all large enough times t.
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3 Transform Methods

3.1 Fourier transform

In this section, all functions are complex-valued.
Definitions and properties.

Definition 3.1. If u ∈ L1(Rn), we define its Fourier transform Fu = û by

û(y) :=
1

(2π)n/2

∫
Rn

e−ix·yu(x)dx(y ∈ Rn)

and its inverse Fourier transform F−1u = ǔ by

ǔ(y) :=
1

(2π)n/2

∫
Rn

eix·yu(x)dx(y ∈ Rn).

Remark 3.1. Since |e±ix·y| = 1 and u ∈ L1(Rn), these integrals converge for each y ∈ Rn.

Theorem 3.1. (Plancherel’s Theorem). Assume u ∈ L1(Rn)∩ L2(Rn). Then û, ǔ ∈ L2(Rn) and

(69) ‖û‖L2(Rn) = ‖ǔ‖L2(Rn) = ‖u‖L2(Rn).

Proof. It is not our concern. Refer to p188 of the book.

Lemma 3.1. (Basic properties of Fourier transform).
(i) (Inverse) (F−1u)(x) = (Fu)(−x);
(ii) (Scaling) (Fu(λx))(ξ) = λ−n(Fu(x))(ξ/λ);
(iii) (Translation) (F f (x − h))(ξ) = e−iξh(F f (x))(ξ);
(iv) (Convolution) (F ( f ∗ g))(x) = 2πn/2(F f )(x)(Fg)(x);
(v) (Modulation) (F (eihx f (x)))(ξ) = (F f )(ξ − h);
(vi) (Conjugation) (F f̄ )(x) = (F f )(−x).

Proof. It is so trivial that we only prove (ii), (iii) and (vi), leaving the rest as exercises.
(ii) In fact,

(Fu(λx))(ξ) =
1

(2π)n/2

∫
Rn

e−iξxu(λx)dx

=
1

(2π)n/2 λ−n
Jacobian

∫
Rn

e−i ξ
λ yu(y)dy = λ−n(Fu(x))(ξ/λ).

(iii) In fact,

(F f (x − h))(ξ) =
1

(2π)n/2

∫
Rn

e−iξx f (x − h)dx

=
1

(2π)n/2

∫
Rn

e−iξ(y+h) f (y)dy = e−iξh(F f (x))(ξ).

(vi) In fact,

(F f )(ξ) =
∫

Rn
e−iξx f (x)dx =

∫
Rn

eiξx f (x)dx,
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and replacing ξ by −ξ, we have

(F f )(−ξ) =
∫

Rn
e−iξx f (x)dx = (F f̄ )(ξ).

Theorem 3.2. (Properties of Fourier transform). Assume u, v ∈ L2(Rn). Then

(i)
∫

Rn
uv̄dx =

∫
Rn

ûv̂dy.

(ii) (Dαu)ˆ= (iy)αû for each multiindex α such that Dαu ∈ L2(Rn).
(iii) If u, v ∈ L1(Rn) ∩ L2(Rn), then (u ∗ v)ˆ= (2π)n/2ûv̂.
(iv) Furthermore, u = (û) .̌

Proof. Another good chance to practice analytical skills. Here we list some hints.
(i) By Theorem 3.1, we have ‖u + αv‖2

L2 = ‖û + αv‖2
L2 . Rewriting with inner product (of

L2 space), and expanding the equation, we obtain 〈u, αv〉 + 〈αv, u〉 = 〈û, αv̂〉 + 〈αv̂, û〉.
Set α = 1 and i, and rewrite the inner product as integrals, to obtain Re uv̄ = Re û ¯̂v and
Im uv̄ = Im û ¯̂v. Adding them together implies the result.
(ii) First assume that u is smooth and has compact support. Integrate by parts, and the
∂Rn term vanishes since u has compact support. In this process the differential operator
is transferred onto e−ixξ through |α| times of integration by parts, i.e.

(Dαu)ˆ(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξ Dαu(x)dx =
(−1)|α|

(2π)n/2

∫
Rn

Dα
x(e

−ix·ξ)u(x)dx.

Then calculating the derivative produces another (−1)|α|, and the result follows in this
case. By approximation the same formula is true if Dαu ∈ L2(Rn).
(iii) Direct computations. Notice the variables and the order of integration.
(iv) First calculate that, for u, v ∈ L1(Rn) ∩ L2(Rn),∫

Rn
ǔvdx =

1
(2π)n/2

∫
Rn

∫
Rn

eix·yu(y)v(x)dxdy =
∫

Rn
uv̌dx.

Also v̌ = (v̄) ,̌ and so we can employ (i) to conclude that∫
Rn

(û) v̌dx =
∫

Rn
uvdx

for all v ∈ L2(Rn).

Applications. The Fourier transform F is an especially powerful technique for studying
linear, constant-coefficient partial differential equations. Below are a few examples, in-
cluding some familiar equations.

Example 3.1. (Bessel potentials). We investigate first the PDE

−∆u + u = f in Rn,
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where f ∈ L2(Rn). We take the Fourier transform, recalling Theorem 3.2(ii) to obtain

F (−∆u)(y) = F
(

n

∑
j=1

uyiyi

)
(y),

and so
(1 + |y|2)û(y) = f̂ (y)(y ∈ Rn).

Thus

(70) û =
f̂

1 + |y|2 =⇒ u = F−1

(
f̂

1 + |y|2

)
.

Now the only real problem is to rewrite the right-hand side of (70) into a more explicit
form. Invoking Theorem 3.2(iii), we set B(x) = F−1

(
1

1+|y|2
)
(x), and then û = f̂ B̂, i.e.

u = (2π)−n/2( f ∗ B)(x). Now we compute

B(x) =
1

(2π)n/2

∫
Rn

eixy 1
1 + |y|2 dy =

1
(2π)n/2

∫
Rn

∫ ∞

0
eixye−te−|y|2tdtdy

=
1

(2π)n/2

∫ ∞

0
e−t

(∫
Rn

eixye−t|y|2dy
)

dt =
1

(2π)n/2

∫ ∞

0
e−t

(π

t

)n/2
e−

|x|2
4t dt

=
1

2n/2

∫ ∞

0
e−tt−n/2e−|x|2/4tdt,

where the second equality is because

1
a
=
∫ ∞

0
e−atdt(a > 0) =⇒ 1

1 + |y|2 =
∫ ∞

0
e−(1+|y|2)tdt,

and the forth equality is due to∫
Rn

eixy−t|y|2dy =
(π

t

)n/2
e−

|x|2
4t .

(B is called a Bessel potential.) Hence

u(x) =
1

(4π)n/2

∫ ∞

0

∫
Rn

e−t− |x−y|2
4t

tn/2 f (y)dydt(x ∈ Rn).

Example 3.2. (Heat equation). Consider again the initial-value problem for the heat equa-
tion {

ut − ∆u = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0}.

Take Fourier transform (in x) to obtain{
ût + |y|2û = 0 for t > 0

û = ĝ for t = 0.
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Solving the ODE yields û = e−t|y|2 ĝ. Set F(x) = F−1(e−t|y|2)(x), and so û = F̂ĝ. Thus

u =
g ∗ F

(2π)n/2 .

But then
F =

1
(2π)n/2

∫
Rn

eix·y−t|y|2dy =
1

(2t)n/2 e−
|x|2
4t

(the details are left as an exercise). Thus

(71) u(x, t) =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t g(y)dy(x ∈ Rn, t > 0),

in agreement with (35). Here we come to an estimate |u(x, t)| ⩽ 1
(4πt)n/2‖g‖L1(Rn) by the

way.

Example 3.3. (Fundamental solution of Schrödinger’s equation). Let us next look at the
initial-value problem for Schrödinger’s equation{

iut + ∆u = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0}

Here u and g are complex-valued. If we formally replace t by it on the right-hand side of
(71), we obtain the formula

(72) u(x, t) =
1

(4πit)n/2

∫
Rn

e
i|x−y|2

4t g(y)dy(x ∈ Rn, t > 0),

where we interpret i
1
2 as e

iπ
4 . This expression clearly makes sense for all times t > 0,

provided g ∈ L1(Rn).
Now we go back and take Fourier transform to obtain iût−|y|2û(y, t) = 0(t > 0)

û(y, t = 0) = ĝ(y).

Solve the ODE to obtain û(y, t) = e−it|y|2 ĝ(y). The remaining steps are all the same as the
previous example, and this is where (72) comes from.

We again estimate that |u(x, t)| ⩽ 1
(4πt)n/2‖g‖L1(Rn), i.e. ‖u‖L∞ ≲ t−

n
2 ‖g‖L1 . Indeed,

since |(4πit)−n/2| ⩽ (4πt)−n/2 and
∣∣∣∣e i|x−y|2

4t

∣∣∣∣ = 1(t > 0), we have

|u(x, t)| ⩽ 1
(4πt)n/2

∫
Rn

g(y)dy = Ct−n/2‖g‖L1(Rn).

Rewrite formula (72) as

u(x, t) =
ei|x|2/4t

(4πit)n/2

∫
Rn

e−ixy/2tei|y|2/4tg(y)dy,
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and we can check as in Theorem 3.1 that if g ∈ L1(Rn) ∩ L2(Rn), then ‖u‖L2(Rn) =

‖g‖L2(Rn). In fact, for the heat equation, we have

‖u‖L2 = ‖û‖L2 = ‖e−t|y|2 ĝ(y)‖L2 ⩽ ‖ĝ‖L2 = ‖g‖L2(t > 0);

but for Schrödinger’s equation, we have

‖u‖L2 = ‖û‖L2 = ‖e−it|y|2 ĝ(y)‖L2 = ‖ĝ‖L2 = ‖g‖L2(t > 0).

Remark 3.2. We call
Ψ(x, t) :=

1
(4πit)n/2 e

i|x|2
4t (x ∈ Rn, t 6= 0)

the fundamental solution of Schrödinger’s equation. Note that formula (72), u = g ∗ Ψ,
makes sense for all times t 6= 0, even t < 0.

Example 3.4. (Wave equation). We next analyze the initial-value problem for the wave
equation {

utt − ∆u = 0 in Rn × (0, ∞)

u = g, ut = h on Rn × {t = 0},

where for simplicity we suppose the initial velocity to be zero. Take Fourier transform as
before and then {

ûtt + |y|2û = 0 for t > 0

û = ĝ, ût = ĥ for t = 0.

This time we will separately study these two initial-value problems:{
utt − ∆u = 0 in Rn × (0, ∞)

u = g, ut = 0 on Rn × {t = 0},

{
utt − ∆u = 0 in Rn × (0, ∞)

u = 0, ut = h on Rn × {t = 0}.

For the former, its Fourier transform reads
ûtt + |y|2û = 0(t > 0)

û(y, t = 0) = ĝ(y)

ût(y, t = 0) = 0.

Solve the ODE to obtain a fundamental set of solutions eit|y| and e−it|y|. Use the initial
conditions to write  a(y) + b(y) = ĝ(y)

i|y|a(y)− i|y|b(y) = 0,

and then û(y, t) = 1
2(e

it|y| + e−it|y|)ĝ(y) = cos(t|y|)ĝ(y). Now do the inverse Fourier
transform and we get

u(x, t) =
1

(2π)n/2

∫
Rn

eixy cos(t|y|)ĝ(y)dy.
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We turn our attention to the latter initial-value problem. This time
ûtt + |y|2û = 0(t > 0)

û(y, t = 0) = 0

ût(y, t = 0) = ĥ(y),

and the solution of this ODE is

û(y, t) =
ĥ(y)
2i|y|e

it|y| − ĥ(y)
2i|y|e

−it|y| =
sin(t|y|)

|y| ĥ(y).

Hence

u(x, t) =
1

(2π)n/2

∫
Rn

eixy sin t|y|
|y| h(y)dy.

We will next prove that this equals exactly
1
2

∫ x+t

x−t
h(y)dy, n = 1,

t−
∫

∂B(x,t)
h(y)dS(y), n = 3.

When n = 1, we have

sin |y|
|y|

y∈R1

====
sin y

y
=

1
2

∫ 1

−1
e−ixydx =⇒ sin t|y|

|y| =
t
2

∫ 1

−1
e−iztydz,

and thus

u(x, t) =
1

(2π)1/2

∫
R

eixy t
2

∫ 1

−1
e−iztydzĥ(y)dy

=
1
2

∫ 1

−1
(z)

t
∫

R
(y)

eixy−izty
∫

R
(η)

eiyηh(η)dηdydz · 1
2π

=
1
2

∫ 1

−1
(z)

t
∫

R
(η)

∫
R

(y)

1
2π

e−i(η+zt−x)ydy h(η)dηdz

=
1
2

∫ 1

−1
(z)

t
∫ ∞

−∞
(η)

δ(η + zt − x)h(η)dηdz (since
∫ ∞

−∞
e−ixydx = 2πδ(y))

=
1
2

∫ 1

−1
th(x − tz)dz (since η + zt − x = 0 =⇒ η = x − zt)

=
1
2

∫ x+t

x−t
h(y)dy. (letting y = x − tz)

This coincides with d’Alembert’s formula (50).
For the case n = 3, first note that∫

|x|=1
e−iξxdS(x) = 4π

sin |ξ|
|ξ| ,
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and by substituting we have

sin t|ξ|
|ξ| =

1
t|∂B(0, 1)|

∫
∂B(0,t)

e−iyξdS(y).

Consequently,

u(x, t) =
1

(2π)3/2

∫
R3

eixy sin t|y|
|y| ĥ(y)dy

=
1

(2π)3/2

∫
R3

eixy 1
t|∂B(0, 1)|

∫
∂B(0,t)

e−izydS(z)
1

(2π)3/2

∫
R3

eiξyh(ξ)dξdy

=
1

(2π)3
1

t|∂B(0, 1)|

∫
∂B(0,t)

∫
R3

∫
R3

e−iy(z+ξ−x)dy h(ξ)dξdS(z)

=
1

t|∂B(0, 1)|
1

(2π)3

∫
∂B(0,t)

∫
R3
(2π)3δ(z + ξ − x)h(ξ)dξdS(z)

=
t

t2|∂B(0, 1)|

∫
∂B(0,t)

h(x − z)dS(z) (since z + ξ − x = 0 =⇒ ξ = x − z)

= t−
∫

∂B(x,t)
h(y)dS(y).

Example 3.5. (Transport equation). At the end of our course, we return to the first PDE
we’ve met, and also probably the easiest example in this chapter. Consider the transport
equation {

ut + b · Du = 0 in Rn × (0, ∞)

u = g on Rn × {t = 0},

and take Fourier transform as usual. This yields{
ût + b · iy · û = 0 in Rn × (0, ∞)

û = ĝ on Rn × {t = 0}.

Solve the ODE to obtain û(y, t) = e−ibyt ĝ(y). Hence

u(x, t) =
1

(2π)n/2

∫
Rn

eixye−ibyt ĝ(y)dy =
1

(2π)n/2

∫
Rn

ei(x−bt)y ĝ(y)dy = g(x − bt).
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APPENDICES

Appendix A Notations

A.1 Geometric notation.

1. ei = (0, · · · , 0, 1, · · · , 0) = ith standard coordinate vector of Rn.

2. Rn
+ = {x = (x1, · · · , xn) ∈ Rn | xn > 0} = open upper half-space.

3. A typical point in Rn+1 will often be denoted as (x, t) = (x1, · · · , xn, t), and we
usually interpret t = xn+1 = time.

4. U, V, and W usually denote open subsets of Rn. We write

V ⊂⊂ U

if V ⊂ V̄ ⊂ U and V̄ is compact, and say V is compactly contained in U.

5. For open and bounded U, UT = U × (0, T] = the parabolic cylinder, ΓT = ŪT −
UT = parabolic boundary of UT.

6. B0(x, r) = {y ∈ Rn | |x − y| < r} = open ball in Rn with center x and radius r > 0.

7. B(x, r) = closed ball with center x, radius r > 0.

8. α(n) =
πn/2

Γ
(n

2 + 1
) = volume of unit ball B(0, 1) in Rn.

nα(n) = surface area of unit sphere ∂B(0, 1) in Rn (note that its dimension is n − 1).

Hence the volume of B(0, r) in Rn is rnα(n), and the surface area of it is nα(n)rn−1.

9. If a = (a1, · · · , an) and b = (b1, · · · , bn) belong to Rn,

a · b =
n

∑
i=1

aibi, |a| =
(

n

∑
i=1

a2
i

) 1
2

.

A.2 Notation for functions, derivatives and function spaces.

1. If u : U → R, we write

u(x) = u(x1, · · · , xn)(x ∈ U).

We say u is smooth provided u is infinitely differentiable. The support of a function
u is denoted spt u.

2. If u : U → Rm, we write

u(x) = (u1(x), · · · , um(x))(x ∈ U).

The function uk is the kth component of u, k = 1, · · · , m.
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3. −
∫

B(x,r)
f dy =

1
α(n)rn

∫
B(x,r)

f dy = average of f over the ball B(x, r)

and

−
∫

∂B(x,r)
f dS =

1
nα(n)rn−1

∫
∂B(x,r)

f dS = average of f over the sphere ∂B(x, r).

4. The convolution of the functions f , g is denoted f ∗ g.

5. Assume u : U → R, x ∈ U, the same below. uxi =
∂u
∂xi

= lim
h→0

u(x + hei)− u(x)
h

,

provided this limit exists. Similarly,
∂2u

∂xi∂xj
= uxixj ,

∂3u
∂xi∂xj∂xk

= uxixjxk , etc.

6. Multiindex Notation:
(a) A vector of the form α = (α1, · · · , αn), where each component αi is a nonnegative
integer, is called a multiindex of order

|α| = α1 + · · ·+ αn.

(b) Given a multiindex α, define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n
= ∂α1

x1 · · · ∂αn
xn u.

(c) If k is a nonnegative integer,

Dku(x) := {Dαu(x) | |α| = k},

the set of all partial derivatives of order k. Assigning some ordering to the various
partial derivatives, we can also regard Dku(x) as a point in Rnk

.

(d) |Dku| =

 ∑
|α|=k

|Dαu|2
1/2

.

(e) Special Cases: If k = 1, we regard the elements of Du as being arranged in a
vector:

Du = (ux1 , · · · , uxn) = gradient vector.

If k = 2, we regard the elements of D2u as being arranged in a matrix:

D2u =


∂2u
∂x2

1
· · · ∂2u

∂x1∂xn

. . .
∂2u

∂xn∂x1
· · · ∂2u

∂x2
n


n×n

= Hessian matrix.

7. ∆u =
n

∑
i=1

uxixi = tr(D2u) = Laplacian of u.
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8. We sometimes employ a subscript attached to the symbols D, D2, etc. to denote the
variables being differentiated, such as Dxu = (ux1 , · · · , uxn), Dyu = (uy1 , · · · , uym).

9. C(Ū) = {u ∈ C(U) | u uniformly continuous}
Ck(Ū) = {u ∈ Ck(U) | Dαu is uniformly continuous for all|α| ⩽ k}.
Thus if u ∈ Ck(Ū), then Dαu continuously extends to Ū for each multiindex α, |α| ⩽
k.

10. C∞(U) = {u : U → R | u infinitely differentiable} =
∞⋂

k=0

Ck(U), C∞(Ū) =
∞⋂

k=0

Ck(Ū).

11. Cc(U), Ck
c (U), etc. denote these functions in C(U), Ck(U), etc. with compact sup-

port.

12. The definitions of Lp(U) and L∞(U) are the same as those in real analysis.

13. It is occasionally useful to introduce spaces of functions with differing smoothness
in the x- and t- variables, although there is no standard notation for such spaces. We
will for this book write

C2
1(UT) = {u : UT → R | u, Dxu, D2

xu, ut ∈ C(UT)}.

In particular, if u ∈ C2
1(UT), then u, Dxu, etc. are continuous up to the top U × {t =

T}.
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Appendix B Calculus Facts

B.1 Boundaries.

Let U ⊂ Rn be open and bounded, k ∈ {1, 2, · · · }.

Definition B.1. We say ∂U is Ck if for each point x0 ∈ ∂U there exist r > 0 and a Ck function
γ : Rn−1 → R such that- upon relabeling and reorienting the coordinates axes if necessary- we
have

U ∩ B(x0, r) = {x ∈ B(x0, r) | xn > γ(x1, · · · , xn−1)}.

Likewise, ∂U is C∞ if ∂U is Ck for k = 1, 2, · · · , and ∂U is analytic if the mapping γ is analytic.

Definition B.2. (i) If ∂U is C1, then along ∂U is defined the outward pointing unit normal vector
field

ν = (ν1, · · · , νn).

The unit normal at any point x0 ∈ ∂U is ν(x0) = ν = (ν1, · · · , νn).
(ii) Let u ∈ C1(Ū). We call

∂u
∂ν

:= ν · Du

the (outward) normal derivative of u.

B.2 Gauss-Green theorem.

In this section we assume U is a bounded, open subset of Rn, and ∂U is C1.

Theorem B.1. (Gauss-Green Theorem) Suppose u ∈ C1(Ū). Then

(B1)
∫

U
uxidx =

∫
∂U

uνidS(i = 1, · · · , n).

Theorem B.2. (Integration-by-parts formula) Let u, v ∈ C1(Ū). Then

(B2)
∫

U
uxi vdx = −

∫
U

uvxidx +
∫

∂U
uvνidS(i = 1, · · · , n).

Proof. Apply Theorem B.1 to uv.

Theorem B.3. (Green’s formulas) Let u, v ∈ C2(Ū). Then

(i)
∫

U
∆udx =

∫
∂U

∂u
∂ν

dS,

(ii)
∫

U
Dv · Dudx = −

∫
U

u∆vdx +
∫

∂U

∂v
∂ν

udS,

(iii)
∫

U
u∆v − v∆udx =

∫
∂U

u
∂v
∂ν

− v
∂u
∂ν

dS.

Proof. Using (B2), with uxi in place of u and v ≡ 1, we see∫
U

uxixidx =
∫

∂U
uxi ν

idS.

Sum i = 1, · · · , n to establish (i).
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To derive (ii), we employ (B2) with v = uxi . Write (ii) with u and v interchanged and
then subtract, to obtain (iii).

B.3 Polar coordinates.

Next we convert n-dimensional integrals into integrals over spheres.

Theorem B.4. (Polar coordinates)
(i) Let f : Rn → R be continuous and summable. Then∫

Rn
f dx =

∫ ∞

0

(∫
∂B(x0,r)

f dS
)

dr

for each point x0 ∈ Rn.
(ii) In particular

d
dr

(∫
B(x0,r)

f dx
)
=
∫

∂B(x0,r)
f dS

for each r > 0.

B.4 Convolution and smoothing.

If U ⊂ Rn is open, ε > 0, write Uε := {x ∈ U : dist(x, ∂U) > ε}.

Definition B.3. (i) Define η ∈ C∞(Rn) by

η(x) :=

C exp
(

1
|x|2−1

)
if |x| < 1

0 if |x| ⩾ 1,

the constant C > 0 selected so that
∫

Rn
ηdx = 1.

(ii) For each ε > 0, set

ηε(x) :=
1
εn η

(x
ε

)
.

We call η the standard mollifier. Note that ηε are all C∞, spt(ηε) ⊂ B(0, ε), and∫
Rn

ηε(x)dx =
∫

Rn
ε−nη(x/ε)dx

y=x/ε
=====

∫
Rn

η(x)dx = 1,

i.e. ηε preserves L1 norm.

Definition B.4. If f : U → R is locally integrable, define its mollification

f ε := ηε ∗ f in Uε.

That is,
f ε(x) =

∫
U

ηε(x − y) f (y)dy =
∫

B(0,ε)
ηε(y) f (x − y)dy

for x ∈ Uε.
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Theorem B.5. (Properties of mollifiers)
(i) f ε ∈ C∞(Uε).
(ii) f ε → f a.e. as ε → 0.
(iii) If f ∈ C(U), then f ε → f uniformly on compact subsets of U.

Proof. It is not required in this course, so we just sketch the proof. For details, see pp 630-
631 of the textbook.

(i) For x + hei ∈ Uε, compute the limit of
f ε(x + hei)− f ε(x)

h
as h → 0 to show that

∂ f ε

∂xi
(x)

exists, and Dα f ε can be obtained similarly.
(ii) Use Lebesgue differentiation theorem (cf. Theorem B.6) to prove that | f ε(x)− f (x)| →
0 as ε → 0 for a.e. x ∈ U.
(iii) Note that f is uniformly continuous on W, where V ⊂⊂ W ⊂⊂ U for a given V ⊂⊂ U.
Then make use of (ii).

B.5 Dirac δ-function.

Dirac δ-function, also known as the unit impulse, is a generalized function on the real
numbers, whose value is zero everywhere except at zero, and whose integral over the

entire real line is equal to one. In other words, δ(x) = 0(x 6= 0), and
∫

R
δ(x)dx = 1.

One way to rigorously capture this function is to define a measure, called Dirac mea-
sure, which accepts a subset A of the real line R as an argument, and returns δ(A) = 1 if
0 ∈ A, and δ(A) = 0 otherwise.

We sometimes denote a translation of δ(x) of distance a by δa(x), a ∈ R.

B.6 Measure theory.

Definition B.5. A measurable function f is summable if∫
Rn

| f |dx < ∞.

Note carefully our terminology: a measurable function is integrable if it has an integral
(which may equal +∞ or −∞ ) and is summable if this integral is finite.

Theorem B.6. (Lebesgue differentiation theorem) Let f : Rn → R be locally summable.
(i) Then for a.e. point x0 ∈ Rn,

−
∫

B(x0,r)
f dx → f (x0) as r → 0.

(ii) In fact, for a.e. point x0 ∈ Rn,

−
∫

B(x0,r)
| f (x)− f (x0)|dx → 0 as r → 0.
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B.7 Poisson’s kernel.

Denote the Poisson’s kernel for the upper space

2xn

nα(n)
1

|x − y|n (x ∈ Rn
+, y ∈ ∂Rn

+)

by K(x, y), then

Theorem B.7.
∫

∂Rn
+

K(x, y)dy = 1.

Proof. Write x = (x′, xn) ∈ Rn
+, where x′ = (x1, · · · , xn−1). Since y ∈ ∂Rn

+, we have∫
∂Rn

+

K(x, y)dy =
2xn

nα(n)

∫
Rn−1

1
(|x′ − y′|2 + x2

n)
n/2 dy′.

Making the change of coordinates z′ =
x′ − y′

xn
gives

2xn

nα(n)

∫
Rn−1

1
(|x′ − y′|2 + x2

n)
n/2 dy′ =

2xn

nα(n)

∫
Rn−1

xn−1
n

xn
n(|z′|2 + 1)n/2 dz′

=
2

nα(n)

∫
Rn−1

1
(|z′|2 + 1)n/2 dz′.

Now we change to polar coordinates:

∫
Rn−1

1
(|z′|2 + 1)n/2 dz′ = (n − 1)α(n − 1)

∫ ∞

0

rn−2

(r2 + 1)n/2 dr

τ=r2
====

1
2
(n − 1)α(n − 1)

∫ ∞

0

τ
n−3

2

(τ + 1)n/2 dτ.

Note that B(x, y) =
∫ +∞

0

τx−1

(1 + τ)x+y dτ (substitute t with τ/(1+ τ) in B(x, y) =
∫ 1

0
tx−1(1−

t)y−1dt), where B is the Beta function. Therefore

∫ ∞

0

τ
n−3

2

(τ + 1)n/2 dτ = B
(

n − 1
2

,
1
2

)
,

and ∫
∂Rn

+

K(x, y)dy =
(n − 1)α(n − 1)

nα(n)
B
(

n − 1
2

,
1
2

)
.

Using that α(n) =
πn/2

Γ(n/2 + 1)
, B(x, y) =

Γ(x)Γ(y)
Γ(x + y)

and Γ(x + 1) = xΓ(x) we can verify

that
(n − 1)α(n − 1)

nα(n)
B
(

n − 1
2

,
1
2

)
= 1.
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B.8 Duhamel’s principle.

Duhamel’s principle is a general method for obtaining solutions to nonhomogeneous
linear evolution equations like the heat equation, wave equation, and vibrating plate equa-
tion. It is named after Jean-Marie Duhamel who first applied the principle to the nonho-
mogeneous heat equation. For linear evolution equations without spatial dependency,
such as a harmonic oscillator, Duhamel’s principle reduces to the method of variation of
parameters technique for solving linear nonhomogeneous ODE. It is also an indispens-
able tool in the study of nonlinear PDE such as the NavierStokes equations and nonlinear
Schrödinger equation where one treats the nonlinearity as an nonhomogeneity.

The philosophy underlying Duhamel’s principle is that it is possible to go from so-
lutions of the Cauchy problem (or initial value problem) to solutions of the nonhomoge-
neous problem. Intuitively, one can think of the nonhomogeneous problem as a set of
homogeneous problems each starting afresh at a different time slice t = t0. By linearity,
one can add up (integrate) the resulting solutions through time t0 and obtain the solution
for the nonhomogeneous problem. This is the essence of Duhamel’s principle.
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